【题目】已知双曲线
的左、右焦点分别为F1、F2,点O为坐标原点,点P在双曲线右支上,△PF1F2内切圆的圆心为Q,圆Q与x轴相切于点A,过F2作直线PQ的垂线,垂足为B. 则 |OA|+2|OB|=_____
【答案】3
【解析】
利用切线长定理,结合双曲线的定义,把|PF1|﹣|PF2|=2a,转化为|AF1|﹣|AF2|=2a,从而求得点A的横坐标即得到|OA|,在△F1CF2中,利用中位线定理得出|OB|,从而得到答案.
根据题意得F1(﹣c,0),F2(c,0),设△PF1F2的内切圆分别与PF1,PF2切于点A1,B1,与F1F2切于点A,则|PA1|=|PB1|,|F1A1|=|F1A|,|F2B1|=|F2A|,又点P在双曲线右支上,∴|PF1|﹣|PF2|=2a,∴|F1A|﹣|F2A|=2a,而|F1A|+|F2A|=2c,设A点坐标为(x,0),则由|F1A|﹣|F2A|=2a,得(x+c)﹣(c﹣x)=2a,解得x=a,
∴|OA|=a,∴在△F1CF2中,OB=
CF1=
(PF1﹣PC)=
(PF1﹣PF2)=
=a,
∴|OA|与|OB|的长度均为a,由双曲线方程
可知,a=1,
∴|OA|+2|OB|=3a=3.
故答案为:3.
科目:高中数学 来源: 题型:
【题目】某观测站
在目标
的南偏西
方向,从
出发有一条南偏东
走向的公路,在
处测得与
相距
的公路
处有一个人正沿着此公路向
走去,走
到达
,此时测得
距离为
,若此人必须在
分钟内从
处到达
处,则此人的最小速度为( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义域为R的奇函数,当x<0时,
.
(1)求f(2)的值;
(2)用定义法判断y=f(x)在区间(-∞,0)上的单调性.
(3)求
的解析式
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】绵阳是党中央、国务院批准建设的中国唯一的科技城,重要的国防科研和电子工业生产基地,市某科研单位在研发过程中发现了一种新合金材料,由大数据测得该产品的性能指标值
(
值越大产品的性能越好)与这种新合金材料的含量
(单位:克)的关系为:当
时,
是
的二次函数;当
时,
测得部分数据如表:
|
|
|
|
|
|
|
|
|
|
|
|
(1)求
关于
的函数关系式
;
(2)求该新合金材料的含量
为何值时产品的性能达到最佳.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知梯形
如图(1)所示,其中
,
,四边形
是边长为
的正方形,现沿
进行折叠,使得平面
平面
,得到如图(2)所示的几何体.
![]()
(Ⅰ)求证:平面
平面
;
(Ⅱ)已知点
在线段
上,且
平面
,求
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中, 曲线
的参数方程为
为参数) ;在以原点
为极点,
轴的正半轴为极轴的极坐标系中, 曲线
的极坐标参数方程为
.
(1)求曲线
的极坐标方程和曲线
的直角坐标方程;
(2)若射线
与曲线
,
的交点分别为
(
异于原点). 当斜率
时, 求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若数列{an}是公差为2的等差数列,数列{bn}满足b1=1,b2=2,且anbn+bn=nbn+1.
(1)求数列{an},{bn}的通项公式;
(2)设数列{cn}满足
,数列{cn}的前n项和为Tn,若不等式(-1)nλ<Tn+
对一切n∈N*恒成立,求实数λ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正三角形ABC的边长为2,D,E,F分别在三边AB,BC和CA上,且D为AB的中点,
,
,
.
(1)当
时,求
的大小;
(2)求
的面积S的最小值及使得S取最小值时
的值.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com