精英家教网 > 高中数学 > 题目详情

【题目】若二次函数 的图象和直线y=x无交点,现有下列结论:
①方程f[f(x)]=x一定没有实数根;
②若a>0,则不等式f[f(x)]>x对一切实数x都成立;
③若a<0,则必存存在实数x0 , 使f[f(x0)]>x0
④若a+b+c=0,则不等式f[f(x)]<x对一切实数都成立;
⑤函数 的图象与直线y=﹣x也一定没有交点.
其中正确的结论是(写出所有正确结论的编号).

【答案】①②④⑤
【解析】解:因为函数f(x)的图象与直线y=x没有交点,所以f(x)>x(a>0)或f(x)<x(a<0)恒成立.
因为f[f(x)]>f(x)>x或f[f(x)]<f(x)<x恒成立,所以f[f(x)]=x没有实数根;
故①正确;
若a>0,则不等式f[f(x)]>f(x)>x对一切实数x都成立;
故②正确;
若a<0,则不等式f[f(x)]<x对一切实数x都成立,所以不存在x0 , 使f[f(x0)]>x0
故③错误;
若a+b+c=0,则f(1)=0<1,可得a<0,因此不等式f[f(x)]<x对一切实数x都成立;
故④正确;
易见函数g(x)=f(﹣x),与f(x)的图象关于y轴对称,所以g(x)和直线y=﹣x也一定没有交点.
故⑤正确;
所以答案是:①②④⑤
【考点精析】解答此题的关键在于理解命题的真假判断与应用的相关知识,掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某商场举行抽奖活动,从装有编号0,1,2,3四个小球的抽奖箱中,每次取出后放回,连续取两次,取出的两个小球号码相加之和等于5中一等奖,等于4中二等奖,等于3中三等奖.
(1)求中三等奖的概率;
(2)求中奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C(a>b>0)的焦点F与抛物线Ey2=4x的焦点重合直线xy=0与以原点O为圆心以椭圆的离心率e为半径的圆相切

()直线x=1与椭圆交于不同的两点MN椭圆C的左焦点F1求△F1MN的内切圆的面积;

()直线l与抛物线E交于不同两点AB直线l与抛物线E交于不同两点CD直线l与直线l交于点M过焦点F分别作ll的平行线交抛物线EPQGH四点证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在直角坐标系 xOy 中,圆锥曲线 C 的参数方程为 为参数),定点 , F1,F2 是圆锥曲线 C 的左,右焦点.
(1)以原点为极点、 x 轴正半轴为极轴建立极坐标系,求经过点 F1 且平行于直线AF2 的直线 l 的极坐标方程;
(2)在(1)的条件下,设直线 l 与圆锥曲线 C 交于 E,F 两点,求弦 EF 的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的偶函数,且在(﹣∞,0]上是增函数,设a=f(log47),b=f(log23),c=f(0.20.6),则a,b,c的大小关系是(
A.c<b<a
B.b<c<a
C.b<a<c
D.a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的极坐标方程为 ,直线l的参数方程为 (t为常数,t∈R)
(1)求直线l的普通方程和圆C的直角坐标方程;
(2)求直线l与圆C相交的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线 为参数), 为参数).
(1)化 的方程为普通方程,并说明它们分别表示什么曲线;
(2)若 上的点 对应的参数为 上的动点,求 中点 到直线 为参数)距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1, 在直角梯形中, 为线段的中点. 沿折起,使平面 平面,得到几何体,如图2所示.

1)求证: 平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】五个人站成一排,求在下列条件下的不同排法种数:
(1)甲必须在排头;
(2)甲、乙相邻;
(3)甲不在排头,并且乙不在排尾;
(4)其中甲、乙两人自左向右从高到矮排列且互不相邻

查看答案和解析>>

同步练习册答案