精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)是定义在R上的偶函数,且在(﹣∞,0]上是增函数,设a=f(log47),b=f(log23),c=f(0.20.6),则a,b,c的大小关系是(
A.c<b<a
B.b<c<a
C.b<a<c
D.a<b<c

【答案】C
【解析】解:f(x)是定义在R上的偶函数,且在(﹣∞,0]上是增函数,要得函数在(0,+∞)上是减函数,
图象越靠近y轴,图象越靠上,即自变量的绝对值越小,函数值越大,
由于0<0.20.6<1<log47<log49=log23,
可得b<a<c,
故选C.
【考点精析】关于本题考查的奇偶性与单调性的综合和对数值大小的比较,需要了解奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性;几个重要的对数恒等式:;常用对数:,即;自然对数:,即(其中…)才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m﹣3,m+3),则实数c的值为(
A.3
B.6
C.9
D.12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,A、B、C的对边分别为a、b、c,己知c﹣b=2bcosA.
(1)若a=2 ,b=3,求c;
(2)若C= ,求角B.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合U={x∈N|0<x≤8},S={1,2,4,5},T={3,5,7},则S∩(UT)=(
A.{1,2,4}
B.{1,2,3,4,5,7}
C.{1,2}
D.{1,2,4,5,6,8}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆锥曲线 是参数)和定点 , F1 , F2 是圆锥曲线的左、右焦点.
(1)求经过点 F2 且垂直于直线 AF1 的直线 l 的参数方程;
(2)设 P 为曲线 C 上的动点,求 P 到直线 l 距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若二次函数 的图象和直线y=x无交点,现有下列结论:
①方程f[f(x)]=x一定没有实数根;
②若a>0,则不等式f[f(x)]>x对一切实数x都成立;
③若a<0,则必存存在实数x0 , 使f[f(x0)]>x0
④若a+b+c=0,则不等式f[f(x)]<x对一切实数都成立;
⑤函数 的图象与直线y=﹣x也一定没有交点.
其中正确的结论是(写出所有正确结论的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形和等边三角形中, ,平面平面

(1)在上找一点,使,并说明理由;

(2)在(1)的条件下,求平面与平面所成锐二面角余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为1的正方体ABCD﹣A1B1C1D1中,E、F分别为棱AA1、BB1的中点,G为棱A1B1上的一点,且A1G=λ(0≤λ≤1),则点G到平面D1EF的距离为(

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为 ( )
A.10
B.11
C.12
D.15

查看答案和解析>>

同步练习册答案