精英家教网 > 高中数学 > 题目详情
20.已知直角坐标系中的点A(-1,0),B(3,2),写出求直线AB的方程的一个算法.

分析 求直线的方程有不同的方法,可用点斜式、斜截式,也可以用两点式或截距式.

解答 解:第一步:求出直线AB的斜率k=$\frac{2-0}{3-(-1)}$=$\frac{1}{2}$;
第二步:选定点A(-1,0),用点斜式写出直线AB的方程y-0=$\frac{1}{2}$[x-(-1)];
第三步:将第二步的运算结果化简,得到方程x-2y+1=0;
第四步:输出结果x-2y+1=0.

点评 只要直线的斜率存在,就可选用点斜式或斜截式方程.对于点斜式方程中的定点,只要是该直线上的点,哪一个都行.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系xOy中,直线l过点P(-1,2),倾斜角为$\frac{3π}{4}$.以坐标原点为极点,x轴正半轴为极轴,取相同的单位长度建立极坐标系,曲线C的极坐标方程为ρ=4cosθ.
(1)写出直线l的参数方程和曲线C的直角坐标方程;
(2)记直线l和曲线C的两个交点分别为A,B,求|PA|+|PB|,|PA|•|PB|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某中学高一、高二、高三年级分别有60人、30人、45人选修了学校开设的某门校本课程,学校用分层抽样的方法从三个年级选修校本课程的人中抽取了一个样本,了解学生对校本课程的学习情况.已知样本中高三年级有3人.
(Ⅰ)分别求出样本中高一、高二年级的人数;
(Ⅱ)用Ai(i=1,2…)表示样本中高一年级学生,Bi(i=1,2…)表示样本中高二年级学生,现从样本中高一、高二年级的所有学生中随机抽取2人.
(ⅰ)用以上学生的表示方法,采用列举法列举出上诉所有可能的情况;
(ⅱ)求(ⅰ)中2人在同一年级的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,角A,B,C所对的边分别为a,b,c,$3sinAcosB+\frac{1}{2}bsin2A=3sinC$,且$A≠\frac{π}{2}$
(1)求a的值;       
(2)若$A=\frac{2π}{3}$,求△ABC周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线L经过点P($\frac{1}{2}$,1),倾斜角$α=\frac{π}{6}$,在极坐标系下,圆C的极坐标方程为$ρ=\sqrt{2}cos({θ-\frac{π}{4}})$.
(1)写出直线l的参数方程,并把圆C的方程化为直角坐标方程;
(2)设l与圆C相交于A,B两点,求点P到A,B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知f(x)=2|x|+x2,若f(a-1)≤3,则a的取值范围是[0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知数列{an}满足an=$\left\{\begin{array}{l}{(\frac{1}{3}-a)n+8,n>8}\\{{a}^{n-7},n≤8}\end{array}\right.$,若对于任意的n∈N*都有an>an+1,则实数a的取值范围是(  )
A.(0,$\frac{1}{3}$)B.(0,$\frac{1}{2}$)C.[$\frac{1}{2}$,1)D.($\frac{1}{3}$,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知△ABC的周长为26且点A,B的坐标分别是(-6,0),(6,0),则点C的轨迹方程为$\frac{{x}^{2}}{49}+\frac{{y}^{2}}{13}$=1(x≠±7).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设z=$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i,则z+z2-z3=(  )
A.2zB.-2zC.2$\overline{z}$D.-2$\overline{z}$

查看答案和解析>>

同步练习册答案