精英家教网 > 高中数学 > 题目详情

若数列中,=1,=3+5, =7+9+11,=13+15+17+19,…,则=            .

1000       


解析:
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等比数列{an}中,a1=3,前n项和为Sn,若数列{an+1}也是等比数列,则Sn等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如果存在常数a使得数列{an}满足:若x是数列{an}中的一项,则a-x也是数列{an}中的一项,称数列{an}为“兑换数列”,常数a是它的“兑换系数”.
(1)若数列:1,2,4,m(m>4)是“兑换系数”为a的“兑换数列”,求m和a的值;
(2)若有穷递增数列{bn}是“兑换系数”为a的“兑换数列”,求证:数列{bn}的前n项和Sn=
n2
•a

(3)已知有穷等差数列{cn}的项数是n0(n0≥3),所有项之和是B,试判断数列{cn}是否是“兑换数列”?如果是的,给予证明,并用n0和B表示它的“兑换系数”;如果不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果存在常数a使得数列{an}满足:若x是数列{an}中的一项,则a-x也是数列{an}中的一项,称数列{an}为“兑换数列”,常数a是它的“兑换系数”.
(1)若数列:1,2,4,m(m>4)是“兑换系数”为a的“兑换数列”,求m和a的值;
(2)已知有穷等差数列bn的项数是n0(n0≥3),所有项之和是B,求证:数列bn是“兑换数列”,并用n0和B表示它的“兑换系数”;
(3)对于一个不少于3项,且各项皆为正整数的递增数列{cn},是否有可能它既是等比数列,又是“兑换数列”?给出你的结论并说明理由.

查看答案和解析>>

科目:高中数学 来源:2009—2010年学年度太原五中高二第二学期月考数学文 题型:填空题

若数列中,=1,="3+5," =7+9+11,=13+15+17+19,…,则=           .

查看答案和解析>>

同步练习册答案