精英家教网 > 高中数学 > 题目详情
19.在△ABC中,|AB|=3,|AC|=5,|BC|=6;点D是边BC上的动点,$\overrightarrow{AD}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,当xy取最大值时,|$\overrightarrow{AD}$|的值为(  )
A.4B.3C.2$\sqrt{2}$D.$2\sqrt{3}$

分析 根据题意,得出xy取最大值时D是AD的中点,再利用余弦定理,列出方程组即可求出|$\overrightarrow{AD}$|的值.

解答 解:如图所示,

△ABC中,点D是边BC上的动点,$\overrightarrow{AD}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,
∴x≥0,y≥0,且x+y=1;
∴xy≤${(\frac{x+y}{2})}^{2}$=$\frac{1}{4}$,当且仅当x=y=$\frac{1}{2}$时“=”成立;
∴D是AD的中点,|BD|=|DC|=3;
设∠ADB=θ,则∠ADC=π-θ,|AD|=a,
△ABD中,由余弦定理得,32=a2+32-2×3×acosθ;…①
△ACD中,由余弦定理得,52=a2+32-2×3×acos(π-θ);…②
由①、②联立,解得a=2$\sqrt{2}$,即|$\overrightarrow{AD}$|=2$\sqrt{2}$.
故选:C.

点评 本题考查了平面向量的基本定理与解三角形的应用问题,也考查了基本不等式的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图所示,已知PA垂直于圆O所在平面,AB是圆O的直径,是圆O的圆周上异于A、B的任意一点,且PA=AC,点E是线段PC的中点.求证:AE⊥平面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某车间为了制定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,得到的
零件的个数x(个)2345
加工的时间y(小时)2.5344.5
数据如下:
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,并在坐标系中画出回归直线;
(3)试预测加工10个零件需要多少小时?
(注:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,AC是圆O的直径,AC=4,PA,PB是圆O的切线,A,B为其切点,过A作AD⊥BP,交BP于D点,连接AB、BC.
(1)求证:△ABC~△ADB;
(2)若切线AP的长为$2\sqrt{3}$,求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知直线的极坐标方程为$ρcos(θ+\frac{π}{3})=\frac{{\sqrt{3}}}{2}$,则极点到该直线的距离是$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=e2x+x2+2aex+2ax+2a2(a∈R)(e是自然对数的底数)的最小值为g(a),则g(a)的最小值1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,设角A、B、C所对的边分别为a、b、c,若cosA=$\frac{1}{3}$,a=2,S△ABC=$\sqrt{2}$,则b的值为(  )
A.2$\sqrt{2}$B.$\sqrt{3}$C.2$\sqrt{3}$D.$\frac{3\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若f(x)=|4x-x2|-lna(a>0)有四个零点,则实数a的取值范围为(1,e4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知sin(3π+θ)=$\frac{1}{2}$,求$\frac{cos(3π+θ)}{cosθ[cos(π+θ)-1]}$+$\frac{cos(θ-4π)}{cos(θ+2π)cos(3π+θ)+cos(-θ)}$的值.

查看答案和解析>>

同步练习册答案