| 零件的个数x(个) | 2 | 3 | 4 | 5 |
| 加工的时间y(小时) | 2.5 | 3 | 4 | 4.5 |
分析 (1)根据表中所给的数据,可得散点图;
(2)求出出横标和纵标的平均数,得到样本中心点,求出对应的横标和纵标的积的和,求出横标的平方和,做出系数和a的值,写出线性回归方程.
(3)将x=10代入回归直线方程,可得结论.
解答 解:(1)作出散点图如下:
…(3分)
(2)$\overline{x}$=3.5,$\overline{y}$=3.5,…(5分)∧
$\sum_{i=1}^{4}$${{x}_{i}}^{2}$=54,$\sum_{i=1}^{4}$xiyi=52.5
∴$\stackrel{∧}{b}$=$\frac{52.5-4×3.5×3.5}{54-4×3.{5}^{2}}$=0.7
$\stackrel{∧}{a}$=3.5-0.7×3.5=1.05,
∴所求线性回归方程为:$\stackrel{∧}{y}$=0.7x+1.05…(10分)
(3)当x=10代入回归直线方程,得$\stackrel{∧}{y}$=0.7×10+1.05=8.05(小时).
所以加工10个零件大约需要8.05个小时…(12分)
点评 本题考查线性回归方程的求法和应用,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}}{2}$ | B. | $\sqrt{2}$ | C. | 2 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 最小正周期为π | |
| B. | 图象可由$y=\frac{1}{2}sinx$先把图象上各点的横坐标变为原来的$\frac{1}{2}$倍(纵坐标不变),再把所得图象向左平移$\frac{π}{8}$个单位长度而得到 | |
| C. | 图象关于直线x=$\frac{5π}{8}$对称 | |
| D. | 图象关于点($\frac{π}{8}$,0)对称 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | 2$\sqrt{2}$ | D. | $2\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | 2 | 3 | 4 | 5 | 6 | 7 |
| y | 3.4 | 2.5 | -0.2 | 0.5 | -2.0 | -3.0 |
| A. | a>0,b<0 | B. | a>0,b>0 | C. | a<0,b>0 | D. | a<0,b<0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com