精英家教网 > 高中数学 > 题目详情
20.已知等比数列{an}为递增数列,满足a4+a6=6,a2•a8=8,则a3=(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.2D.2$\sqrt{2}$

分析 由等比数列{an}的性质可得:a2•a8=8=a4•a6,又a4+a6=6,等比数列{an}为递增数列,联立解得a4,a6,再利用通项公式即可得出.

解答 解:由等比数列{an}的性质可得:a2•a8=8=a4•a6,又a4+a6=6,等比数列{an}为递增数列,
联立解得a4=2,a6=4,
∴公比q满足2q2=4,${a}_{1}{q}^{3}$=2,解得q2=2,a1=$\frac{\sqrt{2}}{2}$.
∴${a}_{3}={a}_{1}{q}^{2}$=$\sqrt{2}$.
故选:B.

点评 本题考查了等比数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.如图,四棱锥P-ABCD,PA⊥平面ABCD,底面ABCD是菱形.
(1)求证:AB∥平面PCD;
(2)求证:BD⊥PC;
(3)若PA=1,AB=$\sqrt{2}$,BD=$\sqrt{6}$,求三棱锥C-PBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知圆C:x2+(y+1)2=4,过点M(-1,-1)的直线l交圆C于A,B两点,当∠ACB最小时,直线l的倾斜角为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知全集U=R,集合A={x|0≤x≤2),B={x|1<x<3),则图中阴影部分所表示的集合为(  )
A.{x|2<x<3}B.{x|2≤x<3}C.{x|0≤x<3}D.{x|1<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=$\frac{[sin(\frac{π}{2}-x)tan(π-x)]^{2}-1}{4sin(\frac{3π}{2}+x)+cos(π-x)+cos(2π-x)}$
(1)求f(-1860°);
(2)若方程f2(x)+(1+$\frac{1}{2}$a)sinx+2a=0在x∈[$\frac{π}{6}$,$\frac{3π}{4}$]上有两根,求实数a的范围.
(3)求函数y=4af2(x)+2cosx(a∈R)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.将圆x2+y2=1上每一点的横坐标都伸长为原来的$\sqrt{3}$倍,纵坐标都伸长为原来的2倍,得到曲线C.
(1)求曲线C的参数方程;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知点P的极坐标为$(2,\frac{2π}{3})$,且点P关于直线$θ=\frac{5π}{6}$的对称点为点Q,设直线PQ与曲线C相交于A、B两点,求线段AB的垂直平分线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.过抛物线y2=4x的焦点作倾斜角为60度的直线交抛物线于A,B两点,则|AB|=(  )
A.$\frac{8}{3}\sqrt{7}$B.$\frac{16}{3}$C.$\frac{8}{3}$D.$\frac{16}{3}\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,已知PA垂直于圆O所在平面,AB是圆O的直径,是圆O的圆周上异于A、B的任意一点,且PA=AC,点E是线段PC的中点.求证:AE⊥平面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某车间为了制定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,得到的
零件的个数x(个)2345
加工的时间y(小时)2.5344.5
数据如下:
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,并在坐标系中画出回归直线;
(3)试预测加工10个零件需要多少小时?
(注:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)

查看答案和解析>>

同步练习册答案