精英家教网 > 高中数学 > 题目详情
14.设i为虚数单位,则复数$\frac{2i-1}{i}$=(  )
A.2+iB.2-iC.-2-iD.-2+i

分析 通过将$\frac{2i-1}{i}$分子、分母同乘以i进行分母有理化,计算即得结论.

解答 解:$\frac{2i-1}{i}$=$\frac{(2i-1)i}{i•i}$=$\frac{-2-i}{-1}$=2+i,
故选:A.

点评 本题考查复数代数形式的乘除运算,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.计算$\frac{\sqrt{2}sin(-1200°)}{tan\frac{7}{4}π}$-cos585°tan(-$\frac{37}{6}π$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知tanα=4$\sqrt{3}$,cos(α+β)=-$\frac{11}{14}$,α,β均为锐角,则β的值是(  )
A.$\frac{π}{12}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.记函数f(x)的导数为f(1)(x),f(1)(x)的导数为f(2)(x),…,f(n-1)(x)的导数为fn(x)(n∈N*),若f(x)可进行n次求导,则f(x)均可近似表示为:f(x)=f(0)+$\frac{{f}^{(1)}(0)}{1!}$x+$\frac{{f}^{(2)}(0)}{2!}$x2+$\frac{{f}^{(3)}(0)}{3!}$x3+…+$\frac{{f}^{(n)}(0)}{n!}$xn,若取n=5,根据这个结论,则可近似估计sin2=$\frac{14}{15}$(用分数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某次运动会在我市举行,为了搞好接待工作,组委会招募了18名男志愿者和12名女志愿者,调查发现,男、女志愿者中分别由11人和5人喜爱运动,其余不喜爱.
(1)根据以上数据完成以下2×2列联表:
喜爱运动不喜爱运动总计
1018
512
总计30
(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.10的前提下认为性别与喜爱运动有关?
(3)从女志愿者中抽取2人参加接待工作,若其中喜爱运动的人数为ξ,求ξ的分布列和数学期望Eξ.
参考公式:x2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
参考数据:
P(x2≥x00.400.250.100.010
x00.7081.3232.7066.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知$\overrightarrow a$=(1,2),$\overrightarrow b$=(x,1),且$\overrightarrow a$与$\overrightarrow b$是共线向量,则x=(  )
A.1B.2C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知tanα=2,那么cos(2α+$\frac{3}{2}π}$)的值等于$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知四面体ABCD的棱长均为$\sqrt{2}$,则下列结论中错误的是(  )
A.AC⊥BD
B.若该四面体的各顶点在同一球面上,则该球的体积为3π
C.直线AB与平面BCD所成的角的余弦值为$\frac{\sqrt{3}}{3}$
D.该四面体的体积为$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{1}{2}$x2-3x+(a-1)lnx,g(x)=ax,h(x)=f(x)-g(x)+3x,其中a∈R且a>1.
(1)求函数f(x)的导函数f′(x)的最小值;
(2)当a=3时,求函数h(x)的单调区间及极值.

查看答案和解析>>

同步练习册答案