精英家教网 > 高中数学 > 题目详情
已知椭C:
x2
a2
+
y2
b2
=1(a>b>0)的焦点为F1,F2,P是椭圆上任意一点,若以坐标原点为圆心,椭圆短轴长为直径的圆经过椭圆的焦点,且△PF1F2的周长为4+2
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线的l是圆O:x2+y2=
4
3
上动点P(x0,y0)(x0-y0≠0)处的切线,l与椭圆C交于不同的两点Q,R,证明:∠QOR的大小为定值.
分析:(Ⅰ)根据以坐标原点为圆心,椭圆短轴长为直径的圆经过椭圆的焦点,可得b=c,利用△PF1F2的周长为4+2
2
,可得a+c=2+
2
,从而可求椭圆的几何量,进而可得椭圆C的方程;
(Ⅱ)设直线的l方程与椭圆方程联立,记Q(x1,y1),R(x2,y2),利用韦达定理,确定x1x2+y1y2=0,即可证得结论.
解答:(Ⅰ)解:因为以坐标原点为圆心,椭圆短轴长为直径的圆经过椭圆的焦点,所以b=c,可得a=
2
c,
又因为△PF1F2的周长为4+2
2
,所以a+c=2+
2
,所以c=
2

所以a=2,b=
2
,所以所求椭圆C的方程为
x2
4
+
y2
2
=1
.           …(5分)
(Ⅱ)证明:直线的l方程为x0x+y0y=
4
3
,且x02+y02=
4
3
,记Q(x1,y1),R(x2,y2),
联立方程
x2
4
+
y2
2
=1
x0x+y0y=
4
3
,消去y得(
y
2
0
+2
x
2
0
)x2-
16
3
x0
x+
32
9
-4
y
2
0
=0,
∴x1+x2=
16
3
x0
y
2
0
+2
x
2
0
,x1x2=
32
9
-4
y
2
0
y
2
0
+2
x
2
0
,…(8分)
y1y2=
1
y
2
0
(
4
3
-x0x1)(
4
3
-x0x2)
=
16
9
-4
x
2
0
y
2
0
+2
x
2
0
,…(10分)
∴x1x2+y1y2=
32
9
-4
y
2
0
y
2
0
+2
x
2
0
+
16
9
-4
x
2
0
y
2
0
+2
x
2
0
=0
∴∠QOR=90°为定值.                                            …(13分)
点评:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查韦达定理的运用,考查学生的计算能力,正确运用韦达定理是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
1
2
,椭圆的短轴端点与双曲线
y2
2
-x2
=1的焦点重合,过P(4,0)且不垂直于x轴直线l与椭圆C相交于A、B两点.
(Ⅰ)求椭C的方程;
(Ⅱ)求
OA
OB
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•崇明县二模)已知椭C:
x2
a2
+
y2
b2
=1
(a>b>0),以椭圆短轴的一个顶点B与两个焦点F1,F2为顶点的三角形周长是4+2
3
,且∠BF1F2=
π
6

(1)求椭圆C的标准方程;
(2)若过点Q(1,
1
2
)引曲线C的弦AB恰好被点Q平分,求弦AB所在的直线方程.

查看答案和解析>>

科目:高中数学 来源:崇明县二模 题型:解答题

已知椭C:
x2
a2
+
y2
b2
=1
(a>b>0),以椭圆短轴的一个顶点B与两个焦点F1,F2为顶点的三角形周长是4+2
3
,且∠BF1F2=
π
6

(1)求椭圆C的标准方程;
(2)若过点Q(1,
1
2
)引曲线C的弦AB恰好被点Q平分,求弦AB所在的直线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭C:
x2
a2
+
y2
b2
=1(a>b>0)的焦点为F1,F2,P是椭圆上任意一点,若以坐标原点为圆心,椭圆短轴长为直径的圆经过椭圆的焦点,且△PF1F2的周长为4+2
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线的l是圆O:x2+y2=
4
3
上动点P(x0,y0)(x0-y0≠0)处的切线,l与椭圆C交于不同的两点Q,R,证明:∠QOR的大小为定值.

查看答案和解析>>

同步练习册答案