精英家教网 > 高中数学 > 题目详情

已知函数.
(1)求函数的单调区间;
(2)若,求函数的值域.

(1) 单调增区间为;单调减区间为
(2) 值域为

解析试题分析:(1)先求导,然后分别令解不等式即可;(2)先求极值,在与边界点的函数值比较大小,就可以求出最大值最小值,进而得到值域.
试题解析:.解:(1) .
时,;2分
时, . 4分
∴函数的单调增区间为
函数的单调减区间为。6分
(2)由(1)知
.
又因为10分
所以函数的值域为 12分
考点:导数在函数中的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

定义在R上的函数及二次函数满足:
(1)求的解析式;
(2)
(3)设,讨论方程的解的个数情况.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

现有一张长为80 cm,宽为60cm的长方形铁皮ABCD,准备用它做成一只无盖长方体铁皮盒,要求材料利用率为100%,不考虑焊接处损失.如图,若长方形ABCD的一个角剪下一块正方形铁皮,作为铁皮盒的底面,用余下材料剪拼后作为铁皮盒的侧面,设长方体的底面边长为x(cm),高为y(cm),体积为V(cm3)

(1)求出xy的关系式;
(2)求该铁皮盒体积V的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某养殖厂需定期购买饲料,已知该厂每天需要饲料200千克,每千克饲料的价格为1.8元,饲料的保管费与其他费用平均每千克每天0.03元,购买饲料每次支付运费300元.
(1)求该厂多少天购买一次饲料才能使平均每天支付的总费用最少;
(2)若提供饲料的公司规定,当一次购买饲料不少于5吨时,其价格可享受八五折优惠(即原价的85%).问:该厂是否应考虑利用此优惠条件?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数f(x)=ax2+x,若对任意x1、x2∈R,恒有2f≤f(x1)+f(x2)成立,不等式f(x)<0的解集为A.
(1)求集合A;
(2)设集合B={x||x+4|<a},若集合B是集合A的子集,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数在点(0,f(0))处的切线方程;
(2)求函数单调递增区间;
(3)若∈[1,1],使得(e是自然对数的底数),求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(其中是实数常数,
(1)若,函数的图像关于点(—1,3)成中心对称,求的值;
(2)若函数满足条件(1),且对任意,总有,求的取值范围;
(3)若b=0,函数是奇函数,,且对任意时,不等式恒成立,求负实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若,当时,求的取值范围;
(2)若定义在上奇函数满足,且当时,,求上的反函数
(3)若关于的不等式在区间上有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设命题pf(x)=在区间(1,+∞)上是减函数;命题qx1x2是方程x2ax-2=0的两个实根,且不等式m2+5m-3≥|x1x2|对任意的实数a∈[-1,1]恒成立.若pq为真,试求实数m的取值范围.

查看答案和解析>>

同步练习册答案