精英家教网 > 高中数学 > 题目详情
1.若函数f(x)=x2+ax+b有两个零点x1,x2,且3<x1<x2<5,那么f(3),f(5)(  )
A.只有一个小于1B.都小于1C.都大于1D.至少有一个小于1

分析 由题意可得f(x)=(x-x1)(x-x2),利用基本不等式可得f(3)•f(5)<1,从而得出结论.

解答 解:由题意可得函数f(x)=(x-x1)(x-x2),
∴f(3)=(3-x1)(3-x2)=(x1-3)(x2-3),f(5)=(5-x1)(5-x2),
∴f(3)•f(5)=(x1-3)(x2-3)(5-x1)(5-x2)=[(x1-3)(5-x1)][(x2-3)(5-x2)]<($\frac{{x}_{1}-3+5-{x}_{1}}{2}$)2($\frac{{x}_{2}-3+5-{x}_{2}}{2}$)2=1×1=1,
即 f(3)•f(5)<1.
故f(3),f(5)两个函数值中至少有一个小于1,
故选:D.

点评 本题主要考查一元二次方程根的分布与系数的关系,本题解题的关键是把函数表示成两点式,利用基本不等式求出函数的最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知抛物线y2=2px(p>0)上一点M(1,m)到其焦点的距离为4,双曲线x2-$\frac{y^2}{a}$=1的左顶点为A,若双曲线的一条渐近线与直线AM垂直,则实数a的值为(  )
A.$-\frac{1}{3}$B.$\frac{1}{3}$C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列命题中错误的是(  )
A.存在定义在[-1,1]上的函数f(x)使得对任意实数y有等式f(cosy)=cos2y成立
B.存在定义在[-1,1]上的函数f(x)使得对任意实数y有等式f(siny)=sin2y成立
C.存在定义在[-1,1]上的函数f(x)使得对任意实数y有等式f(cosy)=cos3y成立
D.存在定义在[-1,1]上的函数f(x)使得对任意实数y有等式f(siny)=sin3y成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.平面直角坐标系xOy中,已知圆x2+y2-2y=0,圆心F为抛物线y=$\frac{1}{2p}$x2的焦点,直线l经过点F与抛物线交于A,B两点,|AB|=5.
(I)求AB中点的纵坐标;
(Ⅱ)将圆F沿y轴向下平移一个单位得到圆N,过抛物线上一点M(2$\sqrt{2}$,m)作圆N的切线,切点分别为C,D,求直线CD的方程和△OCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知等轴双曲线C的一个焦点坐标是($\sqrt{2}$,0),直线y=kx+b与双曲线C恰有1个交点,以|k|,|b|,1为边长的三角形的形状是(  )
A.等腰三角形B.直角三角形
C.等腰或直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设数列{an}的前n项和为Sn,且对任意的n∈N*都有Sn=2an+n-4,
(1)求数列{an}的前三项a1,a2,a3
(2)猜想数列{an}的通项公式an,并用数学归纳法证明;
(3)求证:对任意n∈N*都有$\frac{1}{{a}_{2}-{a}_{1}}$+$\frac{1}{{a}_{3}-{a}_{2}}$+$\frac{1}{{a}_{4}-{a}_{3}}$+…+$\frac{1}{{a}_{n+1}-{a}_{n}}$<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知α、β∈(0,π),且cosα=$\frac{{\sqrt{10}}}{10}$,cosβ=$\frac{{\sqrt{5}}}{5}$,那么α+β=$\frac{3π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知点M,N是抛物线y=4x2上不同的两点,F为抛物线的焦点,且满足∠MFN=135°,弦MN的中点P到直线l:y=-$\frac{1}{16}$的距离为d,若|MN|2=λ•d2,则λ的最小值为(  )
A.$\frac{\sqrt{2}}{2}$B.1-$\frac{\sqrt{2}}{2}$C.1+$\frac{\sqrt{2}}{2}$D.2+$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.抛物线y2=-4x上的点P(-3,m)到焦点的距离等于(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案