精英家教网 > 高中数学 > 题目详情
甲、乙、丙三个同学同时报名参加某重点高校2014年自主招生,高考前自主招生的程序为审核材料和文化测试,只有审核过关后才能参加文化测试,文化测试合格者即可获得自主招生入选资格.因为甲,乙,丙三人各有优势,甲,乙,丙三人审核材料过关的概率分别为
1
2
3
5
2
5
,审核过关后,甲,乙,丙三人文化测试合格的概率分别为
3
5
1
2
3
4

(Ⅰ)求甲,乙,丙三人中只有一人获得自主招生入选资格的概率;
(Ⅱ)设甲,乙,丙三人中材料审核过关的人数为随机变量X,求X的分布列和期望.
考点:离散型随机变量的期望与方差,相互独立事件的概率乘法公式
专题:概率与统计
分析:(I)设甲,乙,丙三人获得自主招生入选资格的概率分别为P(A)、P(B)、P(C),由题意得P(A)=
1
2
×
3
5
=
3
10
P(B)=
1
2
×
3
5
=
3
10
P(C)=
2
5
×
3
4
=
3
10
,由此能求出甲,乙,丙三人中只有一人获得自主招生入选资格的概率.
(Ⅱ)X可能取值为0,1,2,3,分别求出相应的概率,由此能求出X的分布列和期望.
解答: 解:(I)设甲,乙,丙三人获得自主招生入选资格的概率分别为P(A)、P(B)、P(C),
P(A)=
1
2
×
3
5
=
3
10
P(B)=
1
2
×
3
5
=
3
10
P(C)=
2
5
×
3
4
=
3
10

所以甲,乙,丙三人中只有一人获得自主招生入选资格的概率:
P=
C
1
3
3
10
(1-
3
10
)2=0.441

(Ⅱ)X可能取值为0,1,2,3,
P(X=0)=(1-
1
2
)(1-
3
5
)(1-
2
5
)=
3
25

P(X=1)=
1
2
×
2
5
×
3
5
+
1
2
×
3
5
×
3
5
+
1
2
×
2
5
×
2
5
=
19
50

P(X=2)=
1
2
×
3
5
×
2
5
+
1
2
×
2
5
×
2
5
+
1
2
×
3
5
×
3
5
=
19
50

P(X=3)=
1
2
×
3
5
×
2
5
=
3
25

∴X的分布列为:
X0123
P
3
25
19
50
19
50
3
25
EX=0×
3
25
+1×
19
50
+2×
19
50
+3×
6
50
=
3
2
点评:本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,在历年高考中都是必考题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知长方形ABCD中,AB=2,AD=1,M为DC的中点.将△ADM沿AM折起到△APM,使得平面APM⊥平面ABCM,点E在线段PB上,且PE=
1
3
PB.
(Ⅰ)求证:AP⊥BM
(Ⅱ)求二面角E-AM-P的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=2,an+1=2an+2n+2
(1)求a2,a3的值并证明数列{
an
2n
}为等差数列;
(2)bn=(-1)n+1
an
2n
,Tn=b1+b2+…+bn,求T51及Tn
(3)令Cn=|
1
bnbn+1
|,Mn=C1+C2+…+Cn,求Mn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于105的产品为优质品.现用两种新配方(分别称为甲配方和乙配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到如图所示试验结果.
(1)分别估计用甲配方,乙配方生产的产品的优质品率;
(2)已知用乙配方生产的一件产品的利润y(单位:元)与其质量指标值t的关系式为y=
-3 ,t<95
3 , 95≤t<105
5, t≥105
,从用乙配方生产的产品中任取一件,其利润记为X(单位:元)求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)

查看答案和解析>>

科目:高中数学 来源: 题型:

为了调查某厂数万名工人独立生产某种产品的能力,随机抽查了m位工人某天独立生产该产品的数量,产品数量的分组区间为[10,15),[15,20),[20,25),[25,30),[30,35),频率分布直方图如图所示,已知独立生产的产品数量在[20,25)之间的工人有6位.
(Ⅰ)求m的值;
(Ⅱ)工厂规定:若独立生产产品数量当日不小于25,则该工人当选“生产之星”,若将这天独立生产该产品数量的频率视为概率,随机从全厂工人中抽取3人,这3人中当日“生产之星”人数为X,求X的分布列及数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的通项公式为an=2n,n∈N*,等比数列{bn}满足b1=a1,b4=a8
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)求数列{bn}的前n项和Sn
(Ⅲ)设cn=anbn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知中心在原点的双曲线C的右焦点为(2,0),实轴长为2
3
.求双曲线C的方程.
(2)设抛物线y2=mx(m≠0)的准线与直线x=-1的距离为2,求抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

家住H小区的王先生开车到C单位上班有L1、L2两条路线(如图),其中路线L1上有A1、A2、A3三个路口,各路口遇到红灯的概率均为
1
2
;路线L2上有B1、B2两个路口,各路口遇到红灯的概率依次为
3
4
3
5

(1)若走路线L1,求最多遇到1次红灯的概率;
(2)王先生经过研究得到途中所产生的费用如表:
路线距离(公里)行驶费用(元/公里)遇红灯时  费用(元/次)
L1201.51.5
L23011
请你根据上述信息帮助王先生分析,选择哪条路线上班更好些,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=2
5
b
=(-1,3),若
a
b
,则
a
=
 

查看答案和解析>>

同步练习册答案