精英家教网 > 高中数学 > 题目详情
已知|
a
|=2
5
b
=(-1,3),若
a
b
,则
a
=
 
考点:数量积判断两个平面向量的垂直关系,平面向量数量积的运算
专题:计算题,平面向量及应用
分析:
a
=(x,y)
,由模的公式,得到x2+y2=20,再由向量垂直的条件得到-x+3y=0,联立解方程即可.
解答: 解:设
a
=(x,y)

∵|
a
|=2
5
,∴x2+y2=20,①
a
b
b
=(-1,3),
a
b
=0,即-x+3y=0,②
由①②解得,x=3
2
,y=
2
或x=-3
2
,y=-
2

a
=(3
2
2
),或(-3
2
,-
2
).
故答案为:(3
2
2
),或(-3
2
,-
2
).
点评:本题考查向量的模、两向量垂直的坐标表示,考查基本的运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

甲、乙、丙三个同学同时报名参加某重点高校2014年自主招生,高考前自主招生的程序为审核材料和文化测试,只有审核过关后才能参加文化测试,文化测试合格者即可获得自主招生入选资格.因为甲,乙,丙三人各有优势,甲,乙,丙三人审核材料过关的概率分别为
1
2
3
5
2
5
,审核过关后,甲,乙,丙三人文化测试合格的概率分别为
3
5
1
2
3
4

(Ⅰ)求甲,乙,丙三人中只有一人获得自主招生入选资格的概率;
(Ⅱ)设甲,乙,丙三人中材料审核过关的人数为随机变量X,求X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

α,β∈(0,
π
4
),cos(2α-β)=
3
2
,sin(α-2β)=-
1
2
,则cos(α+β)的值等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,直线ρ(cosθ-sinθ)=1与直线ρcosθ=1的夹角大小为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图矩形ORTM内放置5个大小相同的正方形,其中A,B,C,D都在矩形的边上,若向量
BD
=x
AE
-y
AF
,则x-2y=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图正方体ABCD-A1B1C1D1,下面结论正确的是
 
(把你认为正确的结论序号都填上)
①AC∥平面DA1C1
②BD1⊥平面DA1C1; 
③过点B与异面直线AC和A1D所成角均为60°;  
④四面体DA1D1C1与ABCD-A1B1C1D1的内切球半径之比为
3
3

⑤与平面DA1C1平行的平面与正方体的各个面都有交点,则这个截面的周长为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在正四面体P-ABC中,E,F分别是AB、PC中点,则异面直线BF与PE所成的角的余弦值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥P-ABC的所有顶点都在球O的球面上,PC为球O的直径,且PC⊥OA,PC⊥OB,△OAB为等边三角形,三棱锥P-ABC的体积为
4
3
3
,则球O的半径为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)满足:f(x+2)=
f(x)
2
,且x∈[-1,1]时,f(x)=|x|-1,则当x∈[-6,-4]时,f(x)的最小值为(  )
A、-8
B、-4
C、-
1
4
D、-
1
8

查看答案和解析>>

同步练习册答案