精英家教网 > 高中数学 > 题目详情
已知三棱锥P-ABC的所有顶点都在球O的球面上,PC为球O的直径,且PC⊥OA,PC⊥OB,△OAB为等边三角形,三棱锥P-ABC的体积为
4
3
3
,则球O的半径为
 
考点:球的体积和表面积
专题:计算题,空间位置关系与距离
分析:欲求球的半径r.利用截面的性质即可得到三棱锥P-ABC的体积可看成是两个小三棱锥P-ABO和C-ABO的体积和,即可计算出三棱锥的体积,从而建立关于r的方程,即可求出r,从而解决问题.
解答: 解:设球心为O,球的半径r.
∵PC⊥OA,PC⊥OB,∴PC⊥平面AOB,
三棱锥P-ABC的体积可看成是两个小三棱锥P-ABO和C-ABO的体积和.
∴V三棱锥P-ABC=V三棱锥P-ABO+V三棱锥C-ABO=
1
3
×
3
4
×r2×r×2=
4
3
3

∴r=2.
故答案为:2.
点评:本题考查棱锥的体积,考查球内接多面体,解题的关键是确定三棱锥P-ABC的体积可看成是两个小三棱锥P-ABO和C-ABO的体积和.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

家住H小区的王先生开车到C单位上班有L1、L2两条路线(如图),其中路线L1上有A1、A2、A3三个路口,各路口遇到红灯的概率均为
1
2
;路线L2上有B1、B2两个路口,各路口遇到红灯的概率依次为
3
4
3
5

(1)若走路线L1,求最多遇到1次红灯的概率;
(2)王先生经过研究得到途中所产生的费用如表:
路线距离(公里)行驶费用(元/公里)遇红灯时  费用(元/次)
L1201.51.5
L23011
请你根据上述信息帮助王先生分析,选择哪条路线上班更好些,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=2
5
b
=(-1,3),若
a
b
,则
a
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某校共有1200名学生,现采用按性别分层抽样的方法抽取一个容量为200的样本进行健康状况调查,若抽到的男生比女生多10人,则该校男生人数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1的侧棱A1A和B1B上各有一个动点P,Q,且满足A1P=BQ,M是棱CA上的动点,则
VM-ABQP
VABC-A1B1C1-VM-ABQP
的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)的图象为开口向下的抛物线,且对任意x∈R都有f(1+x)=f(1-x).若向量
a
=(m,-1),
b
=(m,-2),则满足不等式f(
a
b
)>f(-1)的m的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若对于?x∈R,|x-a|+|x-a2|≥2恒成立,则实数a的取值范围
 

查看答案和解析>>

科目:高中数学 来源: 题型:

从甲乙两个城市分别随机抽取15台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为
.
x1
.
x2
,中位数分别为m1,m2,则(  )
A、
.
x1
.
x2
,m1<m2
B、
.
x1
.
x2
,m1>m2
C、
.
x1
.
x2
,m1>m2
D、
.
x1
.
x2
,m1<m2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是等差数列,a1+a3+a5=105,a2+a4+a6=99,{an}的前n项和为Sn,则使得Sn达到最大的n是(  )
A、18B、19C、20D、21

查看答案和解析>>

同步练习册答案