分析 利用余弦定理证明即可.
解答 证明:要证(a+b)-1+(b+c)-1=3(a+b+c)-1成立,
即证$\frac{1}{a+b}+\frac{1}{b+c}=\frac{3}{a+b+c}$成立,即证$\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}=3$,即证c2+a2-b2=ac,…(6分)
因为△ABC的三个内角A,B,C成等差数列,所以B=60°,
故$cosB=\frac{{{a^2}+{c^2}-{b^2}}}{2ac}=\frac{1}{2}$,
所以c2+a2-b2=ac,所以原等式成立.…(12分)
点评 本题考查余弦定理的应用,考查分析问题解决问题的能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | 3 | C. | -$\sqrt{3}$ | D. | -3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | b>a>c | B. | a>c>b | C. | c>b>a | D. | 不能确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{20}{31}$ | B. | $\frac{19}{29}$ | C. | $\frac{17}{28}$ | D. | $\frac{16}{27}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com