精英家教网 > 高中数学 > 题目详情
设函数f(x)=(x2+ax+a)e-x,其中x∈R,a是实常数,e是自然对数的底数.
(Ⅰ)确定a的值,使f(x)的极小值为0;
(Ⅱ)证明:当且仅当a=3时,f(x)的极大值为3;
(Ⅲ)讨论关于x的方程f(x)+f′(x)=2xe-x+x-2(x≠0)的实数根的个数.

解:(Ⅰ)
令f′(x)=0,解得:x=0或x=2-a,
①当a=2时,f′(x)≤0,此时无极值;
②当0<2-a,即a<2时,f′(x)和f(x)的变化如下表1,

此时应有f(0)=0,所以,a=0<2;
③当0>2-a,即a>2时,f′(x)和f(x)的变化如下表2,

此时应有f(2-a)=0,即
所以必有
综上所述,当a=0或a=4时,f(x)的极小值为0。
(Ⅱ)若a<2,则由表1知,应有f(2-a)=3,


,则
由a<2,故g′(x)>0,
于是当a<2时,g(a)<g(2)=2<3,即不可能成立;
若a>2,则由表2知,应有f(0)=3,即a=3;
综上所述,当且仅当a=3时极大值为3。
(Ⅲ) ∵
∴方程可以化为
进而化为
构造函数
求导可得,
由ψ′(x)>0得x<0或x>2,由ψ′(x)<0得0<x<2,
从而ψ(x)在区间(-∞,0)和(2,+∞)上单调递增,在区间(0,2)上单调递减,
当x=2时,函数ψ(x)取得极小值
并且结合函数图象可知:当|x|无限趋近于0时,ψ(x)>0并且取值无限增大,其图象向上无限接近y轴,但永远也达不到y轴(此时y轴足渐近线);
当x<0并无限减小时,ψ(x)>0并且取值也无限减小,其图象在 x轴上方并向左无限接近x轴,但永远也达不到x轴(此时x轴是渐近线);
当x>2并无限增大时,ψ(x)>0并且取值也无增大,其图象在第一象限内向右上方无限延伸(如图所示)
 
因此,当a≤0时,原方程无实根;
当0<a<时,原方程只有一个实数根;
当a=时,原方程有两个不等的实数根;
当a>时,原方程有三个不等的实数根。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)的定义域为D,若存在非零常数l,使得对于任意x⊆M(M⊆D)都有f(x+l)≥f(x),则称f(x)为M上的高调函数,l是一个高调值.
现给出下列命题:
①函数f(x)=(
1
2
)
x
为R上的高调函数;
②函数f(x)=sin2x为R上的高调函数
③若函数f(x)=x2+2x为(-∞,1]上的高调函数,则高调值l的取值范围是(-∞,-4].
其中正确的命题个数是(  )
A、0个B、1个C、2个D、3个

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2+bx+c(a≠0)满足条件:①当x∈R时,f(x-4)=f(2-x),且x≤f(x)≤
12
(1+x2)
;②f(x)在R上的最小值为0.
(1)求f(1)的值及f(x)的解析式;
(2)若g(x)=f(x)-k2x在[-1,1]上是单调函数,求k的取值范围;
(3)求最大值m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为D,若存在非零实数h使得对于任意x∈M(M⊆D),有x+h⊆D,且f(x+h)≥f(x),则称f(x)为M上的“h阶高调函数”.给出如下结论:
①若函数f(x)在R上单调递增,则存在非零实数h使f(x)为R上的“h阶高调函数”;
②若函数f(x)为R上的“h阶高调函数”,则f(x)在R上单调递增;
③若函数f(x)=x2为区间[-1,+∞)上的“h阶高诬蔑财函数”,则h≥2;
④若函数f(x)在R上的奇函数,且x≥0时,f(x)=|x-1|-1,则f(x)只能是R上的“4阶高调函数”.
其中正确结论的序号为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设函数f(x)的定义域为D,若存在非零实数h使得对于任意x∈M(M⊆D),有x+h⊆D,且f(x+h)≥f(x),则称f(x)为M上的“h阶高调函数”.给出如下结论:
①若函数f(x)在R上单调递增,则存在非零实数h使f(x)为R上的“h阶高调函数”;
②若函数f(x)为R上的“h阶高调函数”,则f(x)在R上单调递增;
③若函数f(x)=x2为区间[-1,+∞)上的“h阶高诬蔑财函数”,则h≥2;
④若函数f(x)在R上的奇函数,且x≥0时,f(x)=|x-1|-1,则f(x)只能是R上的“4阶高调函数”.
其中正确结论的序号为


  1. A.
    ①③
  2. B.
    ①④
  3. C.
    ②③
  4. D.
    ②④

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设二次函数f(x)=ax2+bx+c(a≠0)满足条件:①当x∈R时,f(x-4)=f(2-x),且x≤f(x)≤
1
2
(1+x2)
;②f(x)在R上的最小值为0.
(1)求f(1)的值及f(x)的解析式;
(2)若g(x)=f(x)-k2x在[-1,1]上是单调函数,求k的取值范围;
(3)求最大值m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x.

查看答案和解析>>

同步练习册答案