【题目】已知圆,A为圆O1上任意一点,点D在线段上.,已知,.
(1)求点D的轨迹方程H;
(2)若直线与方程H所表示的图像交于E,F两点,是椭圆上任意一点.若OG平分弦EF,且,,试判断四边形OEGF形状并证明.
【答案】(1);(2)平行四边形,见解析
【解析】
(1)由题可得,得D的轨迹是以为焦点的椭圆,求出,可得轨迹方程;
(2) 联立,利用韦达定理及弦长公式表示出,列方程求出的值,进而可得EF平分OG,从而判断四边形OEGF形状.
解:(1) ∵,
∴DC为AB中垂线,
∴,
∴,
∴D的轨迹是以为焦点的椭圆,且,
,解得,
∴点D轨迹方程H:;
(2)联立,,
设,
∵OG平分EF,
∴由中点弦公式有,①
∴,
又G到EF距离为,
∴,
利用①以及有,
化为,
令,则(*),观察有t = 1是一解,
∴,
又,∴,
又由,
∴,
∴方程(*)有唯一解t = 1即,
∴,
∴EF也平分OG,
故四边形OEGF对角线相互平分,四边形OEGF是平行四边形
科目:高中数学 来源: 题型:
【题目】已知点P(2,2),圆,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.
(1)求点M的轨迹方程;
(2)当|OP|=|OM|时,求l的方程及△POM的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某射手每次射击击中目标的概率是,且各次射击的结果互不影响.
(Ⅰ)假设这名射手射击次,求有次连续击中目标,另外次未击中目标的概率;
(Ⅱ)假设这名射手射击次,记随机变量为射手击中目标的次数,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】双曲线C:左、右焦点分别为,,左、右顶点分别为,B为虚轴的上顶点,若直线上存在两点使得,且过双曲线的右焦点作斜率为1的直线与双曲线的左、右两支各有一个交点,则双曲线离心率的范围是( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知曲线(为参数),.以原点为极点,轴的非负半轴为极轴建立极坐标系.
(I)写出曲线与圆的极坐标方程;
(II)在极坐标系中,已知射线分别与曲线及圆相交于,当时,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E的方程为y2=1,其左焦点和右焦点分别为F1,F2,P是椭圆E上位于第一象限的一点
(1)若三角形PF1F2的面积为,求点P的坐标;
(2)设A(1,0),记线段PA的长度为d,求d的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年的天猫“双11”交易金额又创新高,达到2684亿元,物流爆增.某机构为了了解网购者对收到快递的满意度进行调查,对某市5000名网购者发出满意度调查评分表,收集并随机抽取了200名网购者的调查评分(评分在70~100分之间),其频率分布直方图如图,评分在95分及以上确定为“非常满意”.
(1)求的值;
(2)以样本的频率作概率,试估计本次调查的网购者中“非常满意”的人数;
(3)按分层抽样的方法,从评分在90分及以上的网购者中抽取6人,再从这6人中随机地选取2人,求至少选到一个“非常满意”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点为椭圆上任意一点,直线与圆交于两点,点为椭圆的左焦点.
(Ⅰ)求椭圆的离心率及左焦点的坐标;
(Ⅱ)求证:直线与椭圆相切;
(Ⅲ)判断是否为定值,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com