精英家教网 > 高中数学 > 题目详情

【题目】双曲线C左、右焦点分别为,左、右顶点分别为B为虚轴的上顶点,若直线上存在两点使得,且过双曲线的右焦点作斜率为1的直线与双曲线的左、右两支各有一个交点,则双曲线离心率的范围是(

A.B.C.D.

【答案】D

【解析】

直线上存在两点使得等价于以线段为直径的圆与直线相交,求出圆与直线的方程,利用直线与圆相交列不等式求离心率的范围,又由过双曲线的右焦点作斜率为1的直线与双曲线的左、右两支各有一个交点,可得,进一步求离心率的范围,综合可得结果.

解:直线上存在两点使得等价于以线段为直径的圆与直线相交,

由已知 ,即

,解得

又过双曲线的右焦点作斜率为1的直线与双曲线的左、右两支各有一个交点,

,解得

综上双曲线离心率的范围是

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)f(x)的最小值;

(2)若关于x的不等式(1,+∞)上恒成立,求整数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过定点P(4,0),且在y轴上截得的弦MN的长为8.

(1)求动圆圆心C的轨迹方程;

(2)过点(2,0)的直线l与动圆圆心C的轨迹交于A,B两点,求证:是一个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】苹果可按果径(最大横切面直径,单位:.)分为五个等级:时为1级,时为2级,时为3级,时为4级,时为5级.不同果径的苹果,按照不同外观指标又分为特级果、一级果、二级果.某果园采摘苹果10000个,果径均在内,从中随机抽取2000个苹果进行统计分析,得到如图1所示的频率分布直方图,图2为抽取的样本中果径在80以上的苹果的等级分布统计图.

(1)假设服从正态分布,其中的近似值为果径的样本平均数(同一组数据用该区间的中点值代替),,试估计采摘的10000个苹果中,果径位于区间的苹果个数;

(2)已知该果园今年共收获果径在80以上的苹果,且售价为特级果12元,一级果10元,二级果9元.设该果园售出这苹果的收入为以频率估计概率,求的数学期望.

附:若随机变量服从正态分布,则

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆,圆.以坐标原点为极点,轴的正半轴为极轴建立极坐标系.

(1)求圆的极坐标方程;

(2)设分别为上的点,若为等边三角形,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆A为圆O1上任意一点,点D在线段上.,已知

(1)求点D的轨迹方程H

(2)若直线与方程H所表示的图像交于EF两点,是椭圆上任意一点.若OG平分弦EF,且,试判断四边形OEGF形状并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,焦点,如果存在过点的直线与抛物线交于不同的两点.,使得,则称点为抛物线分点

1)如果,直线,求的值;

2)如果为抛物线分点,求直线的方程;

3)证明点不是抛物线“2分点

4)如果是抛物线的“2分点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术;蕴含了极致的数学美和丰富的传统文化信息,现有一幅剪纸的设计图,其中的4个小圆均过正方形的中心,且内切于正方形的两邻边.若在正方形内随机取一点,则该点取自黑色部分的概率为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平行四边形中,过点C的直线与线段分别相交于点MN,若

1)求y关于x的函数解析式;

2)定义函数),点列)在函数的图像上,且数列是以1为首项,0.5为公比的等比数列,O为原点,令,是否存在点,使得?若存在,求出Q点的坐标,若不存在,说明理由;

3)设函数上的偶函数,当时,,又函数的图像关于直线对称,当方程)上有两个不同的实数解时,求实数a的取值范围;

查看答案和解析>>

同步练习册答案