精英家教网 > 高中数学 > 题目详情
(2009•南汇区二模)三位同学在研究函数f(x)=
x
1+|x|
(x∈R) 时,分别给出下面三个结论:
①函数f(x)的值域为 (-1,1)
②若x1≠x2,则一定有f(x1)≠f(x2
③若规定f1(x)=f(x),fn+1(x)=f[fn(x)],则fn(x)=
x
1+n|x|
对任意n∈N*恒成立.
你认为上述三个结论中正确的个数有
3
3
分析:函数f(x)=
x
1+|x|
化为分段函数即函数f(x)=
x
1+x
(x≥0)
x
1-x
(x<0)
∵f(-x)=-f(x)∴函数f(x)=
x
1+|x|
为奇函数,从而判断函数当x≥0时的性质即可,由值域和单调性可得①②正确,③的正确性可用数学归纳法证明
解答:解:函数f(x)=
x
1+|x|
化为分段函数即函数f(x)=
x
1+x
(x≥0)
x
1-x
(x<0)

∵f(-x)=-f(x)
∴函数f(x)=
x
1+|x|
为奇函数,
∵x≥0时,f(x)=
x
1+x
=1-
1
1+x
∈[0,1)
∴函数f(x)的值域为 (-1,1),故①正确
∵x≥0时,f(x)=
x
1+x
=1-
1
1+x
为[0,+∞)的单调增函数
∴函数f(x)为R上的单调增函数,
∴若x1≠x2,则一定有f(x1)≠f(x2),故②正确
下面用数学归纳法证明③正确
证明:n=1时,命题显然成立;
假设n=k时命题成立,即fk(x)=
x
1+k|x|

则n=k+1时,fk+1(x)=f(fk(x))=
fk(x)
1+k|fk(x)|
=
x
1+k|x|
1+k|
x
1+k|x|
|
=
x
1+(k+1)|x|

即n=k+1时命题成立
fn(x)=
x
1+n|x|
对任意n∈N*恒成立
故答案为3
点评:本题考查了函数的值域的求法,函数单调性的定义及判断方法,函数与数列的综合,解题时要紧紧抓住函数的奇偶性解决问题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•南汇区二模)如图,将一个边长为1的正三角形的每条边三等分,以中间一段为边向形外作正三角形,并擦去中间一段,得图(2),如此继续下去,得图(3)…试用 n表示出第n个图形的边数an=
3×4n-1
3×4n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•南汇区二模)
lim
n→∞
C
2
n
2n2+1
=
1
4
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•南汇区二模)地球的半径为R,在北纬45°东经30°有一座城市A,在北纬45°东经120°有一座城市B,则坐飞机从A城市飞到B城市的最短距离是
π
3
R
π
3
R
 (飞机的飞行高度忽略不计).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•南汇区二模)f(x)=sin
4
(n∈N*)
,则f(1)+f(2)+f(3)+…+f(2009)=
2
2
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•南汇区二模)1+i是实系数方程x2-ax-b=0的一个虚数根,则直线ax+by=1与圆C:x2+y2=1交点的个数是(  )

查看答案和解析>>

同步练习册答案