精英家教网 > 高中数学 > 题目详情

已知圆,直线 与圆交与两点,点.
(1)当时,求的值;
(2)当时,求的取值范围.

(1);(2).

解析试题分析:(1)由点在圆C上且满足是直径,即直线过圆心;(2)由的取值范围,就是要建立起点与直线的关系,它们是通过点联系起来.我们可以设出两点的坐标分别为即为,一方面由可得到的关系,另一方面直线与圆C相交于点,把直线方程与圆方程联立方程组,可以得到的关系,从而建立起的关系,可求出的范围.
试题解析:(1)圆的方程可化为,故圆心为,半径....2分
时,点在圆上,又,故直线过圆心,∴   4分
从而所求直线的方程为                                6分
(2)设
 即
           ①               8分
联立得方程组,化简,整理得
    .(*)
由判别式且有      10分
代入 ①式整理得,从而,又
可得的取值范围是  14分
考点:(1)圆周角与弦的关系;(2)直线与圆相交问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知动圆与直线相切且与圆外切。
(1)求圆心的轨迹方程;
(2)过定点作直线交轨迹两点,点关于坐标原点的对称点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆C经过A(1,1)、B(2,)两点,且圆心C在直线l:x-y+1=0上,求圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,圆O与离心率为的椭圆T:)相切于点M

⑴求椭圆T与圆O的方程;
⑵过点M引两条互相垂直的两直线与两曲线分别交于点A、C与点B、D(均不重合)。
①若P为椭圆上任一点,记点P到两直线的距离分别为,求的最大值;
②若,求的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知以点 为圆心的圆与直线 相切,过点的动直线 与圆 相交于两点,的中点,直线相交于点 .

(1)求圆的方程;
(2)当时,求直线的方程;
(3)是否为定值?如果是,求出其定值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长之比为3:1;③圆心到直线的距离为,求该圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆C的半径为2,圆心在轴正半轴上,直线与圆C相切
(1)求圆C的方程;
(2)过点的直线与圆C交于不同的两点且为
求:的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆C的半径为2,圆心在轴正半轴上,直线与圆C相切
(1)求圆C的方程;
(2)过点的直线与圆C交于不同的两点且为时,求:的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系xOy中,直线l的参数方程为(t为参数)在极坐标系(与直角坐标系xOy取相同的长度单位。且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为
(I)求圆C的直角坐标方程;
(Ⅱ)设圆C与直线l交于点A,B.若点P的坐标为(1,2),求的最小值.

查看答案和解析>>

同步练习册答案