已知圆C的半径为2,圆心在轴正半轴上,直线与圆C相切
(1)求圆C的方程;
(2)过点的直线与圆C交于不同的两点且为时,求:的面积.
(1);(2).
解析试题分析:(1)半径已知,所以只需确定圆心即可,设圆心,因为直线与圆相切,利用圆心到直线的距离列式求;(2)从可以看出,这是韦达定理的特征,故把直线方程设为,与(1)所求圆的方程联立,得关于的一元二次方程,用含有的代数式表示出,进而利用列方程,求,然后用弦长公式求,用点到直线的距离公式求高,面积可求.
试题解析:(I)设圆心为,则圆C的方程为
因为圆C与相切 所以 解得:(舍)
所以圆C的方程为: 4分
(II)依题意:设直线l的方程为:
由得
∵l与圆C相交于不同两点
∴
又∵ ∴
整理得: 解得(舍)
∴直线l的方程为: 8分
圆心C到l的距离 在△ABC中,|AB|=
原点O到直线l的距离,即△AOB底边AB边上的高
∴ 12分
考点:1、直线和圆的位置关系;2、圆的方程;3、弦长公式和点到直线的距离公式和韦达定理.
科目:高中数学 来源: 题型:解答题
已知圆,设点B,C是直线上的两点,它们的横坐标分别是,点P在线段BC上,过P点作圆M的切线PA,切点为A
(1)若,求直线的方程;
(2)经过三点的圆的圆心是,求线段(为坐标原点)长的最小值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,已知圆 的圆心为,过点且斜率为的直线与圆相交于不同的两点.
(Ⅰ)求的取值范围;
(Ⅱ)以OA,OB为邻边作平行四边形OADB,是否存在常数,使得直线OD与PQ平行?如果存在,求值;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆和点(1)若过点有且只有一条直线与圆相切,求正实数的值,并求出切线方程;(2)若,过点的圆的两条弦互相垂直,设分别为圆心到弦的距离.
(Ⅰ)求的值;
(Ⅱ)求两弦长之积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
若圆经过坐标原点和点,且与直线相切, 从圆外一点向该圆引切线,为切点,
(Ⅰ)求圆的方程;
(Ⅱ)已知点,且, 试判断点是否总在某一定直线上,若是,求出的方程;若不是,请说明理由;
(Ⅲ)若(Ⅱ)中直线与轴的交点为,点是直线上两动点,且以为直径的圆过点,圆是否过定点?证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com