精英家教网 > 高中数学 > 题目详情
1.已知i是虚数单位,则(1+i)(-2-i)=(  )
A.-3+iB.-1+3iC.-3-iD.-1-3i

分析 直接由复数代数形式的乘法运算化简得答案.

解答 解:(1+i)(-2-i)=-1-3i,
故选:D.

点评 本题考查了复数代数形式的乘除运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\left\{{\begin{array}{l}{2^x}&{({x≤2})}\\{{{log}_{\frac{1}{2}}}x}&{({x>2})}\end{array}}$,则函数y=f(1-x)的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.要得到y=sin(-2x+$\frac{π}{4}$)的图象,只需将y=sin(-2x)的图象(  )
A.向左平移$\frac{π}{4}$个单位B.向右平移$\frac{π}{4}$个单位
C.向左平移$\frac{π}{8}$个单位D.向右平移$\frac{π}{8}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.二项式(x-$\frac{1}{x}$)8的展开式x6的系数为-8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的导函数.
(Ⅰ)若f(x)≥ag(x)恒成立,求实数a的取值范围;
(Ⅱ)设n∈N*,证明:$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n+1}$<ln(n+1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知数列{an}满足:2an=an+1+an-1(n≥2,n∈N*),且a1>0,a1、3、a3依次成等比数列,则数列{an}前四项和的最小值为6$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.为了美化景区环境,景区管理单位决定对游客乱扔垃圾现象进行罚款处理.为了更好地实行措施特向游客征求意见,随机抽取了200人进行了调查,得到如表数据:
罚款金额x(单位:元)0102050100
会继续乱扔垃圾的人数y20151050
(Ⅰ)画出散点图,判断变量x与y之间是正相关还是负相关,并求回归直线方程 $\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\hat b$=-0.18,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$;
(Ⅱ)由(Ⅰ)分析,要使乱扔垃圾者的人数不超过5%,罚款金额至少是多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2sin($\frac{x}{3}$-φ)(0<φ<$\frac{π}{2}$)的图象经过点(0,-1).
(1)求函数f(x)的对称轴方程及相邻两条对称轴间的距离d;
(2)设α、β∈[0,$\frac{π}{2}$],f(3α+$\frac{π}{2}$)=$\frac{10}{13}$,f(3β+2π)=$\frac{6}{5}$,求cos(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.把函数f(x)=cos(2x+φ)的图象向左平移$\frac{π}{6}$个单位后,所得图象关于y轴对称,则φ可以为(  )
A.$-\frac{π}{6}$B.$-\frac{π}{3}$C.$\frac{π}{6}$D.$\frac{π}{3}$

查看答案和解析>>

同步练习册答案