精英家教网 > 高中数学 > 题目详情
9.二项式(x-$\frac{1}{x}$)8的展开式x6的系数为-8.

分析 在二项展开式的通项公式中,令x的幂指数等于6,求出r的值,即可求得开式中x的系数.

解答 解:${T_{r+1}}=C_8^r{x^{8-r}}{(-\frac{1}{x})^r}={(-1)^r}C_8^r{x^{8-2r}}$,
令8-2r=6,即r=1,
故x6的系数为${(-1)^1}C_8^1=-8$,
故答案为:-8.

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数y=$\frac{{9x}^{2}+6x+1}{{x}^{2}+1}$,求该函数的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.(-x)2$\sqrt{-\frac{1}{x}}$等于(  )
A.$\sqrt{x}$B.-x$\sqrt{-x}$C.x$\sqrt{x}$D.x$\sqrt{-x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.从某大学一年级女生中,选取身高分别是150cm、155cm、160cm、165cm、170cm的学生各一名,其身高和体重数据如表所示:
身高/cm(x)150155160165170
体重/kg(y)4346495156
(1)求y关于x的线性回归方程;
(2)利用(1)中的回归方程,计算身高为168cm时,体重的估计值$\stackrel{∧}{y}$为多少?
    参考公式:线性回归方程 $\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知数列{an}的前n项和为Sn,且满足a1=2,2an-2=Sn(其中n∈N*),则Sn=2n+1-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.某产品的广告费用x与销售额y的统计数据如表:
广告费用x(万元)3456
销售额y(万元)25304045
根据上表可得回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=7,则$\stackrel{∧}{a}$=3.5,据此模型预报广告费为7万元时销售额为52.5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知i是虚数单位,则(1+i)(-2-i)=(  )
A.-3+iB.-1+3iC.-3-iD.-1-3i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设函数f(x)=ex(x3-3x+2-c)+x(x≥-2),若不等式f(x)≥0恒成立,则实数c的最大值是-2e2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.把函数f(x)=sin(2x+φ)的图象向左平移$\frac{π}{6}$个单位后,所得图象关于y轴对称,则φ可以为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$-\frac{π}{6}$D.$-\frac{π}{3}$

查看答案和解析>>

同步练习册答案