精英家教网 > 高中数学 > 题目详情

【题目】某搜索引擎广告按照付费价格对搜索结果进行排名,点击一次付费价格排名越靠前被点击的次数也可能会提高已知某关键词被甲乙等多个公司竞争其中甲乙付费情况与每小时点击量结果绘制成如下的折线图.

(1)试根据所给数据计算每小时点击次数的均值方差并分析两组数据的特征;

(2)若把乙公司设置的每次点击价格为x,每小时点击次数为,则点近似在一条直线附近.试根据前5次价格与每小时点击次数的关系,求y关于x的回归直线.(回归方程系数公式,).

【答案】(1)甲公司每小时点击次数更加稳定; (2)回归直线方程为:.

【解析】试题分析:

(1)由题意可得甲乙的平均数均为7,甲的方差为1.2,乙的方差为5.4,故甲公司每小时点击次数更加稳定.

(2)由题意可得回归方程为.

试题解析:

(1)由题图可知甲公司每小时点击次数为9,5,7,8,7,6,8,6,7,7,

乙公司每小时点击次数为2,4,6,8,7,7,8,9,9,10.

甲公司每小时点击次数的平均数为:

乙公司每小时点击次数的平均数为:

甲公司每小时点击次数的方差为:;

乙公司每小时点击次数的方差为:

由计算已知,甲、乙公司每小时点击次数的均值相同,但是甲的方差较小,

所以,甲公司每小时点击次数更加稳定.

(2)根据折线图可得数据如下:

点击次数y

2

4

6

8

7

点击价格x

1

2

3

4

5

,则,

所求回归直线方程为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , a1=﹣ ,Sn+ =an﹣2(n≥2,n∈N)
(1)求S2 , S3 , S4的值;
(2)猜想Sn的表达式;并用数学归纳法加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱的所有棱长均为2, 分别为的中点.

(1)证明: 平面

(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是平行四边形, ,侧面底面 分别为的中点,点在线段上.

(Ⅰ)求证: 平面

(Ⅱ)如果直线与平面所成的角和直线与平面所成的角相等,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体ABCD﹣A1B1C1D1中,AA1=AD=1,E为CD中点.

(1)求证:C1D∥平面AB1E;
(2)求证:BC1⊥B1E;
(3)若AB= ,求二面角E﹣AB1﹣B的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若在区间上有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=a2x+ (a,b,c为常数,且a>0,c>0).
(1)当a=1,b=0时,求证:|f(x)|≥2c;
(2)当b=1时,如果对任意的x>1都有f(x)>a恒成立,求证:a+2c>1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对一批产品的长度(单位:毫米)进行抽样检测,样本容量为400,右图为检测结果的频率分布直方图,根据产品标准,单件产品长度在区间[25,30)的为一等品,在区间[20,25)和[30,35)的为二等品,其余均为三等品,则样本中三等品的件数为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}是有穷数列,且a1∈R,公差d=2,记{an}的所有项之和为S,若a12+S≤96,则数列{an}至多有项.

查看答案和解析>>

同步练习册答案