精英家教网 > 高中数学 > 题目详情
如图,在半径为4的⊙O中,∠AOB=90°,D为OB的中点,AD的延长线交⊙O于点E,则线段DE的长为
 
考点:与圆有关的比例线段
专题:立体几何
分析:延长BO交⊙O与点C,由相交弦定理知AD•DE=BD•DC,由此能求出DE.
解答: 解:延长BO交⊙O与点C,
由题设知:BD=2,DC=6,AD=
42+22
=2
5

又由相交弦定理知AD•DE=BD•DC,
解得DE=
BD•DC
AD
=
2×6
2
5
=
6
5
5

故答案为:
6
5
5
点评:本题考查线段长的求法,是中档题,解题时要认真审题,注意相交弦定理的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知tanα=
1
2
,则
cos2α+sin2α+1
cos2α
等于(  )
A、4
B、6
C、12
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线y=Asin(ωx+φ)(A>0,ω>0,|φ|≤
π
2
)上最高点为(2,
2
),该最高点到相邻的最低点间曲线与x轴交于一点(6,0).求函数解析式,并求函数在x∈[-6,0]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足2an+1+an=0,a1=-2,则数列{an}的前10项和S10为(  )
A、
4
3
(210-1)
B、
4
3
(210+1)
C、
4
3
(2-10-1)
D、
4
3
(2-10+1)

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,在同一个坐标系中,an=f(n)及Sn=g(n)的部分图象如图所示,则(  )
A、当n=4时,Sn取得最大值
B、当n=3时,Sn取得最大值
C、当n=4时,Sn取得最小值
D、当n=3时,Sn取得最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

五位同学围成一圈依次循环报数,规定:
(1)第一位同学首次报出的数为1,第二位同学首次报出的数为2,之后每位同学所报出的数都是前两位同学所报出的数之和;
(2)若报出的数为3的倍数,则报该数的同学需拍手一次;
已知甲同学第一个报数,当五位同学依次循环报到第100个数时,甲同学拍手的总次数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足a1=2,an+1-an=3×22n-1,数列{bn}满足bn=log2an
(1)求数列{an}的通项公式;
(2)记数列{
1
bnbn+1
}
的前n项和为Tn,若t≥Tn对任意的n∈N+恒成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

袋中有3只红球,2只白球,1只黑球.
(1)若从袋中有放回的抽取3次,每次抽取一只,求恰有两次取到红球的概率.
(2)若从袋中有放回的抽取3次,每次抽取一只,求抽全三种颜色球的概率.
(3)若从袋中不放回的抽取3次,每次抽取一只.设取到1只红球得2分,取到1    只白球得1分,取到1只黑球得0分,试求得分ξ的数学期望.
(4)若从袋中不放回的抽取,每次抽取一只.当取到红球时停止抽取,否则继续抽取,求抽取次数η的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在区间(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x3),其中a<x1<x2<x3<b,证明:在区间(x1,x2)内至少存在ξ一点,使得f″(ξ)=0.

查看答案和解析>>

同步练习册答案