精英家教网 > 高中数学 > 题目详情

【题目】四面体ABCD中,AB和CD为对棱.设AB=a,CD=b,且异面直线AB与CD间的距离为d,夹角为θ.
(Ⅰ)若θ= ,且棱AB垂直于平面BCD,求四面体ABCD的体积;
(Ⅱ)当θ= 时,证明:四面体ABCD的体积为一定值;
(Ⅲ)求四面体ABCD的体积.

【答案】证明:(Ⅰ)如图5﹣2,由于棱AB⊥平面BCD,过B作CD边上的高BE,
则AB⊥BE,CD⊥BE,
故BE是异面直线AB与CD的距离,即d=BE.
所以VABCD= ABSBCD= a = abd.

(Ⅱ)如图5﹣3,过A作底面BCD的垂线,垂足为O,连结BO与CD相交于E.连结AE,
再过E作AB的垂线,垂足为F.
因为AB⊥CD,所以BO⊥CD(三垂线定理的逆定理),
所以CD⊥平面ABE,
因为EF平面ABE,
所以CD⊥EF,
又EF⊥AB.
所以EF即为异面直线AB,CD的公垂线.
所以EF=d.注意到CD⊥平面ABE.
所以VABCD= CDSABE= ABEFCD= abd为定值.
(Ⅲ)如图5﹣4:将四面体ABCD补成一个平行六面体ABB'D'﹣A'CC'D.
由于AB,CD所成角为θ,
所以∠DCA'=θ,
又异面直线AB与CD间的距离即上、下两底面AB',A'C'的距离,
所以VABB'D'A'CC'D= absinθ×2d=abdsinθ.
显然VABCD= VABB'D'A'CC'D= abdsinθ
【解析】(Ⅰ)根据异面直线的距离的定义结合三棱锥的体积公式进行求解即可.(Ⅱ)找出异面直线AB,CD的公垂线,结合三棱锥的体积公式进行证明即可.(Ⅲ)根据锥体的体积公式进行求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)已知椭圆的左焦点为,右顶点为的坐标为的面积为.

(I)求椭圆的离心率;

(II)在线段延长线段与椭圆交于点,点上,,且直线与直线间的距离为四边形的面积为.

(i)求直线的斜率;

(ii)求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数),且的导数为.

(Ⅰ)若是定义域内的增函数,求实数的取值范围;

(Ⅱ)若方程有3个不同的实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】大学生赵敏利用寒假参加社会实践,对机械销售公司7月份至12月份销售某种机械配件的销售量及销售单价进行了调查,销售单价和销售量之间的一组数据如下表所示:

月份

7

8

9

10

11

12

销售单价(元)

9

9.5

10

10.5

11

8

销售量(件)

11

10

8

6

5

14

(1)根据7至11月份的数据,求出关于的回归直线方程;

(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5元,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?

(3)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多少元才能获得最大利润?(注:利润=销售收入-成本).

 参考公式:回归直线方程,其中,参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知PA⊥⊙O所在的平面,AB是⊙O的直径,AB=2,C是⊙O上一点,且AC=BC,PC与⊙O所在的平面成45°角,E是PC中点.F为PB中点.
(1)求证:EF∥面ABC;
(2)求证:EF⊥面PAC;
(3)求三棱锥B﹣PAC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若钝角三角形的三边长和面积都是整数,则称这样的三角形为“钝角整数三角形”,下列选项中能构成一个“钝角整数三角形”三边长的是(
A.2,3,4
B.2,4,5
C.5,5,6
D.4,13,15

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 满足3an﹣2Sn﹣1=0.
(1)求数列{an}的通项公式;
(2)bn= ,数列{bn}的前n项和为Tn , 求f(n)= (n∈N+)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市有大型超市200家、中型超市400家、小型超市1400 家.为掌握各类超市的营业情况,现按分层抽样方法抽取一个容量为100的样本,应抽取中型超市(
A.70家
B.50家
C.20家
D.10家

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点在以为直径的圆上,垂直与圆所在平面,的垂心.

(1)求证:平面平面

(2)若,求二面角的余弦值.

查看答案和解析>>

同步练习册答案