【题目】已知函数(),且的导数为.
(Ⅰ)若是定义域内的增函数,求实数的取值范围;
(Ⅱ)若方程有3个不同的实数根,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】一个盒子装有六张卡片,上面分别写着如下六个函数:
.
(Ⅰ)从中任意拿取张卡片,其中至少有一张卡片上写着的函数为奇函数,在此条件下,求两张卡片上写着的函数相加得到的新函数为奇函数的概率;
(Ⅱ)现从盒子中逐一抽取卡片,且每次取出后均不放回,若取到一张写有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一盒中装有各色球12只,其中5个红球,4个黑球,2个白球,1个绿球;从中随机取出1球.求:
(1)取出的1球是红球或黑球的概率;
(2)取出的1球是红球或黑球或白球的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的参数方程为(为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,已知直线的极坐标方程为, .
(Ⅰ)若直线与曲线交于不同的两点, ,当时,求的值;
(Ⅱ)当时,求曲线关于直线对称的曲线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx﹣ a(x﹣1)(a∈R).
(1)若a=﹣2,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若不等式f(x)<0对任意x∈(1,+∞)恒成立. (ⅰ)求实数a的取值范围;
(ⅱ)试比较ea﹣2与ae﹣2的大小,并给出证明(e为自然对数的底数,e=2.71828).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线: 的焦点也是椭圆: ()的一个焦点, 与的公共弦长为.
(Ⅰ)求的方程
(Ⅱ)过点的直线与相交于, 两点,与相交于, 两点,且, 同向.若求直线的斜率;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四面体ABCD中,AB和CD为对棱.设AB=a,CD=b,且异面直线AB与CD间的距离为d,夹角为θ.
(Ⅰ)若θ= ,且棱AB垂直于平面BCD,求四面体ABCD的体积;
(Ⅱ)当θ= 时,证明:四面体ABCD的体积为一定值;
(Ⅲ)求四面体ABCD的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com