精英家教网 > 高中数学 > 题目详情
若函数f(x)=lg(mx2+mx+1)的定义域为R,则m的取值范围是
[0,4)
[0,4)
分析:要使函数f(x)=log2(mx2+mx+1)的定义域为R,可转化成mx2+mx+1>0在R上恒成立,讨论二次项系数是否为0,建立关系式,解之即可求出所求.
解答:解:∵函数f(x)=log2(mx2+mx+1)的定义域为R,
∴mx2+mx+1>0在R上恒成立,
①当m=0时,有1>0在R上恒成立,故符合条件;
②当m≠0时,由
m>0
△=m2-4m<0
,解得0<m<4,
综上,实数m的取值范围是[0,4).
故答案为:[0,4).
点评:本题主要考查了对数函数的定义域,同时考查了恒成立问题,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列四个命题;其中所有正确命题的序号是
①,②,③(多写少写均作0分)
①,②,③(多写少写均作0分)

①函数f(x)=x|x|+bx+c为奇函数的充要条件是c=0;
②函数y=2-x(x>0)的反函数是y=-log2x(0<x<1);
③若函数f(x)=lg(x2+ax-a)的值域是R,则a≤-4或a≥0;
④若函数y=f(x-1)是偶函数,则函数y=f(x)的图象关于直线x=0对称.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出如下四个命题:
①?x∈(0,+∞),x2>x3
②?x∈(0,+∞),x>ex
③函数f(x)定义域为R,且f(2-x)=f(x),则f(x)的图象关于直线x=1对称;
④若函数f(x)=lg(x2+ax-a)的值域为R,则a≤-4或a≥0;
其中正确的命题是
③④
③④
.(写出所有正确命题的题号)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①已知函数f(x)=(
1
2x-1
)•x2-sinx+a(a为常数)
,且f(loga1000)=3,则f(lglg2)=3;
②若函数f(x)=lg(x2+ax-a)的值域是R,则a∈(-4,0);
③关于x的方程(
1
2
)x=lga
有非负实数根,则实数a的取值范围是(1,10);
④如图,三棱柱ABC-A1B1C1中,E、F分别是AB,AC的中点,平面EB1C1F将三棱柱分成几何体AEF-AB1C1和B1C1-EFCB两部分,其体积分别为V1,V2,则V1:V2=7:5.
其中正确命题的序号是
①③④
①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=lg(ax2+x+1)在区间(-1,+∞)上为单调递增函数,则实数a的取值范围是
[0,
1
2
]
[0,
1
2
]

查看答案和解析>>

同步练习册答案