精英家教网 > 高中数学 > 题目详情
4.把1,2,3,…,6这六个数随机地排成一列组成一个数列,要求该数列恰先增后减,则这样的数列共有多少个?(  )
A.31B.30C.28D.32

分析 该数列恰先增后减,则数字6一定是分界点,且前面的顺序和后面的顺序都只有一种,根据6前面的数字的个数多少分类即可.

解答 解:该数列恰先增后减,则数字6一定是分界点,且前面的顺序和后面的顺序都只有一种,
当6前有1个数字时,有C51=5种,
当6前有2个数字时,有C52=10种,
当6前有3个数字时,有C53=10种,
当6前有4个数字时,有C54=5种,
根据分类计数原理,共有5+10+10+5=30种,
故选:B.

点评 本题考查了分类计数原理,关键是掌握分类的方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.某小区有排成一排的8个车位,现有5辆不同型号的轿车需要停放,则这5辆轿车停入车位后,剩余3个车位连在一起的概率为$\frac{3}{28}$(结果用最简分数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的前n项和为Sn,且2Sn+3=3an(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{4n+1}{a_n}$,Tn=b1+b2+b3+…+bn,求证:Tn<$\frac{7}{2}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.抛掷两枚质地均匀的骰子,得到的点数分别为a,b,则使得直线bx+ay=1与圆x2+y2=1相交且所得弦长不超过$\frac{4\sqrt{2}}{3}$的概率为$\frac{1}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.“六一”儿童节这天,糖果店的售货员忙极了,请你设计一个程序,帮助售货员算账,已知水果糖每千克10元,奶糖每千克15元,巧克力糖每千克25元,那么依次购买这三种糖果a,b,c千克,应收取多少元钱?写出一个算法,画出程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,内角A,B,C的对边分别是a,b,c,且a>c.若cosB=$\frac{1}{3}$,ac=6,b=3.
(Ⅰ)求a和cosC的值;     
(Ⅱ)求cos(2C+$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}的前n项和为Sn,数列{bn}为等差数列,b1=-1,bn>0(n≥2),b2Sn+an=2且3a2=2a3+a1
(1)求{an}、{bn}的通项公式;
(2)设cn=$\frac{1}{{a}_{n}}$,Tn=$\frac{b_1}{{{c_1}+1}}$+$\frac{b_2}{{{c_2}+1}}$+…+$\frac{b_n}{{{c_n}+1}}$,证明:Tn<$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知$\overrightarrow a$=(cosx+$\sqrt{3}$sinx,1),$\overrightarrow b$=(y,2cosx),且$\overrightarrow a$∥$\overrightarrow b$.
(1)将y表示为x的函数f(x),并求f(x)的单调增区间.
(2)已知a,b,c分别为△ABC的三个内角∠A,∠B,∠C对应边的边长,若f($\frac{A}{2}$)=3且a=2,S△ABC=$\sqrt{3}$,求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若复数(1-i)(2+bi)是纯虚数,则实数b=(  )
A.-2B.-1C.1D.2

查看答案和解析>>

同步练习册答案