已知函数f(x)=x3+mx2+nx-2的图象过点(-1,-6),且函数g(x)=f′(x)+6x是偶函数.
(Ⅰ)求m、n的值;(Ⅱ)若a>0,求函数y=f(x)在区间(a-1,a+1)内的极值.
解:(Ⅰ)由函数f(x)图象过点(-1,-6),得m-n=-3,①………………1分
由f(x)=x3+mx2+nx-2,得f′(x)=3x2+2mx+n,………………………………………2分
则g(x)=f′(x)+6x=3x2+(6+2m)x+n;
而g(x)图象关于y轴对称,所以-
=0,所以m=-3,
代入①得n=0.………………………………………………………………………4分
(Ⅱ)由(Ⅰ)得f′(x)=3x(x-2),
令f′(x)=0得x=0或x=2.…………………………………………………………5分
当x变化时,f′(x)、f(x)的变化情况如下表:
![]()
由此可得:
当0<a<1时,f(x)在(a-1,a+1)内有极大值f(0)=-2,无极小值;
当a=1时,f(x)在(a-1,a+1)内无极值;
当1<a<3时,f(x)在(a-1,a+1)内有极小值f(2)=-6,无极大值;
当a≥3时,f(x)在(a-1,a+1)内无极值.…………………………………………11分
综上得:当0<a<1时,f(x)有极大值-2,无极小值,当1<a<3时,有极小值-6,无极大值,当a=1或a≥3时,f(x)无极值.…………………………………………12分
【解析】略
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
| x |
| a |
| b |
| x |
| 4c2 |
| k(k+c) |
查看答案和解析>>
科目:高中数学 来源:浙江省东阳中学高三10月阶段性考试数学理科试题 题型:022
已知函数f(x)的图像在[a,b]上连续不断,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值,若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.已知函数f(x)=x2,x∈[-1,4]为[-1,4]上的“k阶收缩函数”,则k的值是_________.
查看答案和解析>>
科目:高中数学 来源:上海模拟 题型:解答题
| x |
| a |
| b |
| x |
| 4c2 |
| k(k+c) |
查看答案和解析>>
科目:高中数学 来源:2009-2010学年河南省许昌市长葛三高高三第七次考试数学试卷(理科)(解析版) 题型:选择题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com