精英家教网 > 高中数学 > 题目详情
已知数列{an}是公差不为零的等差数列,a1=1,且2a2+2=a4
(1)求数列{an}的通项公式an
(2)设bn=
1
anan+1
,求数列{bn}的前n项和Sn
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)设等差数列{an}的公差,由题意求得公差,则等差数列的通项公式可求;
(2)把等差数列的通项公式代入bn=
1
anan+1
,然后利用裂项相消法求数列的前n项和.
解答: 解:(1)设等差数列{an}的公差为d(d≠0),
由a1=1,且2a2+2=a4,得2(1+d)+2=1+3d,
解得:d=3.
∴an=1+3(n-1)=3n-2;
(2)由bn=
1
anan+1
,得
bn=
1
(3n-2)(3n+1)
=
1
3
(
1
3n-2
-
1
3n+1
)

∴数列{bn}的前n项和Sn=
1
3
(
1
1
-
1
4
+
1
4
-
1
7
+…+
1
3n-2
-
1
3n+1
)

=
1
3
(1-
1
3n+1
)=
n
3n+1
点评:本题考查了等差数列的通项公式,考查了裂项相消法求数列的和,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(2x)=x2-2x,则f(1)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右顶点A作斜率为-1的直线与椭圆的另一个交点为M,与y轴的交点为B,若|AM|=|MB|则椭圆的离心率为(  )
A、
6
2
B、
2
3
C、
6
3
D、
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

某公司生产一种产品,每年需投入预定成本60万元,此外每生产1万件产品需要增加投资35万元,经预测知,市场对这种产品的需求量为5万件,且当售出的这种产品的数量为t(单位:万件)时,销售所得的收入约为500t-50t2(万元).
(1)若该公司这种产品的年产量为x(单位:万件,x>0),试把该公司生产销售这种产品所得的年利润表示为当年产量x的函数.
(2)当该公司的年产量为多大时,当年所得的利润最大?并求出当年所得利润最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
x+1
x2+1
的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体A1B1C1D1-ABCD中,E,F分别为A1D与D1C的中点.
(Ⅰ)证明:EF∥平面ABCD;
(Ⅱ)证明:DD1⊥EF.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1
的离心率e=
2
3
,A、B是椭圆上关于x、y轴均不对称的两点,线段AB的垂直平分线与x轴交于点P(1,0).
(1)设AB的中点为C(x0,y0),求x0的值;
(2)若F是椭圆的右焦点,且AF+BF=3,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(-2,-3)和以Q为圆心的圆(x-4)2+(y-2)2=9.
(1)求以PQ为直径,Q′为圆心的圆的方程;
(2)以Q为圆心的圆和以Q′为圆心的圆的两个交点A,B,直线PA,PB是以Q为圆心的圆的切线吗?为什么?
(3)求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=lg(3-4sin2x)的定义域和值域.

查看答案和解析>>

同步练习册答案