精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ln(ex+a)(a为常数)是R上的奇函数.
(1)求a的值;
(2)讨论函数数学公式的零点的个数.

解:(1)∵函数f(x)=ln(ex+a)(a为常数)是R上的奇函数
∴满足f(0)=0,
∴ln(1+a)=0,
∴a=0
可以验证当a=0时,函数是一个奇函数.

(2)由已知得:
,f2(x)=x2-2ex+m

当x∈(0,e)时,f1(x)≥0
∴f1(x)在(0,e)上是一个增函数;
当x∈[e,+∞)时,
f1(x)在[e,+∞)上为减函数.
当x=e时,f1(x)的最大值是
而f2(x)=(x-e)2+m-e2
∴当m-e2,即m时,方程无解;
当m-,即m=时,方程有一个根;
当m-时,m时,方程有两个根.
分析:(1)根据函数在全体实数上有定义,函数又是一个奇函数,得到函数在自变量0的取值是0,写出关于a的方程,解方程即可.
(2)把函数变化为两个基本函数,对于函数的单调性的整理,根据函数的导函数大于零,得到函数递增,根据函数的单调性求出函数的最值,利用函数的最值进行比较得到结果.
点评:本题考查函数的单调性,考查函数的零点的判断方法,考查函数的导函数的应用,考查利用最值进行比较,得到函数的有无解的情况,本题是一个综合题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案