精英家教网 > 高中数学 > 题目详情
19.若不等式组$\left\{\begin{array}{l}{x-y≥0}\\{2x+y≤2}\\{y≥0}\\{x+y≤a}\end{array}\right.$表示的平面区域是一个三角形,则a的取值范围是(  )
A.0<a≤1或a≥$\frac{4}{3}$B.0<a≤1C.0≤a<1或a>$\frac{4}{3}$D.0<a<1

分析 本题考查的是简单线性规划问题.线性规划要注意数形结合,要综合运用多方面的知识.特别要注意区域的边界.因此在解答此题时应先根据先行约束条件画出可行域,然后根据可行域的特点及条件:表示的平面区域是一个三角形及其内部,找出不等关系即可.

解答 解:由题意可知:画可行域如图:

不等式组表示的平面区域是一个三角形及其内部,
且当直线x+y=a过直线y=x与直线2x+y=2的交点时,a=$\frac{4}{3}$.
所以a的取值范围是:0<a≤1或a≥$\frac{2}{3}$,
故选:A.

点评 本题考查的是简单线性规划问题.在解答的过程当中成分体现了数形结合的思想和构成三角形的相关知识,特别是对线性规划中的区域边界考查得到了充分的体现,值得同学们体会反思.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.如果p:x>2,q:x>3,那么p是q的必要不充分条件.(从“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中选出适当的一种填空)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.点M(x,y,z)是空间直角坐标系Oxyz中的一点,则与点M关于y轴对称的点的坐标是(-x,y,-z).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{x+2}{x}$
(1)写出函数f(x)的定义域和值域;
(2)证明函数f(x)在(0,+∞)为单调递减函数;并求f(x)在x∈[2,8]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知数列{an},{bn}满足a1=1,$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{1}{3{a}_{n}+2}$,anbn=1,则使bn>101的最小的n为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(Ⅰ)若函数f(x)=$\sqrt{{x}^{2}-kx-k}$定义域为R,求k的取值范围;
(Ⅱ)解关于x的不等式(x-a)(x+a-1)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知m,n都是实数,m≠0,f(x)=|x-1|+|x-2|.
(Ⅰ)若f(x)>2,求实数x的取值范围;
(Ⅱ)若|m+n|+|m-n|≥|m|f(x)对满足条件的所有m,n都成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知等差数列{an}满足:a1=2,公差d≠0且a1,a2,a5成等比数列
(1)求数列{an}的通项公式;
(2)记数列{an}的前n项和为Sn,是否存在正整数n,使得Sn>60n+800?若存在,求n的最小值,若不存在,说明理由;
(3)若bn=$\frac{{a}_{n}}{2}$且cn=2n•bn,记数列{cn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.命题p:0<x<1,命题q:x2<2x,命题p是 q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.即不充分也不必要条件

查看答案和解析>>

同步练习册答案