精英家教网 > 高中数学 > 题目详情

【题目】随着城市地铁建设的持续推进,市民的出行也越来越便利,根据大数据统计,某条地铁线路运行时,发车时间间隔(单位:分钟)满足: ,平均每班地铁的载客人数 (单位:人)与发车时间间隔近似地满足函数关系:

1)若平均每班地铁的载客人数不超过1560人,试求发车时间间隔的取值范围;

2)若平均每班地铁每分钟的净收益为(单位:元),则当发车时间间隔为多少时,平均每班地铁每分钟的净收益最大?并求出最大净收益.

【答案】1;(2,最大值为260.

【解析】

1)根据题意即求解不等式

2)根据题意求出的解析式,利用函数单调性或基本不等式求最值.

1)当超过1560,所以不满足题意;

载客人数不超过1560

,解得,由于

所以

2)根据题意

根据基本不等式,,当且仅当,即时取得等号,所以

即当时,平均利润的最大值为260元,

时,单调递减,

综上所述,最大值为260.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某企业生产AB两种产品,生产每一吨产品所需的劳动力和煤、电耗如下表:

千瓦

A

3

9

4

B

10

4

5

已知生产每吨A产品的利润是7万元,生产每吨B产品的利润是12万元,现在条件有限,该企业仅有劳动力300个,煤360吨,并且供电局只能供电200千瓦,试问:该企业生产AB两种产品各多少吨,才能获得最大利润?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代数学著作《算法统综》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”其大意为:“有一个人走378里路,第一天健步走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地”,请问此人第5天走的路程为( )

A. 36里 B. 24里 C. 18里 D. 12里

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y = f(x)是定义域为R的偶函数,当x≥0时,函数f(x)的图象是由一段抛物线和一条射线组成(如图所示)

时,y的取值范围是______

如果对任意 (b <0),都有,那么b的最大值是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(),曲线在点处的切线方程为.

(1)求实数的值,并求的单调区间;

(2)试比较的大小,并说明理由;

(3)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义在上的函数,若存在实数)使得对于任意 都有成立,则称函数是带状函数;若存在最小值,则称为带宽.

1)判断函数 是不是带状函数?如果是,指出带宽(不用证明);如果不是,请说明理由;

2)求证:函数)是带状函数;

3)求证:函数是带状函数的充要条件是.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体中,若分别是棱的中点,则必有( )

A.

B.

C. 平面平面

D. 平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将平面上每个点都以红、蓝两色之一着色,证明:存在这样的两个相似三角形,它们的相似比为1995,并且每一个三角形的三个顶点同色。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,抛物线的焦点为,射线与抛物线相交于点,与其准线相交于点,则( )

A. B. C. D.

查看答案和解析>>

同步练习册答案