【题目】中国古代数学著作《算法统综》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”其大意为:“有一个人走378里路,第一天健步走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地”,请问此人第5天走的路程为( )
A. 36里 B. 24里 C. 18里 D. 12里
科目:高中数学 来源: 题型:
【题目】已知圆:关于直线对称且过点和,直线过定点.
(1)证明:直线与圆相交;
(2)记直线与圆的两个交点为,.
①若弦长,求直线方程;
②求面积的最大值及面积的最大时的直线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】边长为1的正方形(及其内部)绕的旋转一周形成圆柱,如图,长为,长为,其中与在平面的同侧.
(1)求二面角的大小;(结果用反三角函数值表示)
(2)用一平行于的平面去截这个圆柱,若该截面把圆柱侧面积分成两部分,求与该截面的距离;
(3)求线段,绕着旋转所形成的几何体的表面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当时,若,求的取值范围;
(2)若定义在上奇函数满足,且当时,,求在上的解析式;
(3)对于(2)中的,若关于的不等式在上恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】据某气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示.过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即时间t(h)内沙尘暴所经过的路程s(km).
(1)当t=4时,求s的值;
(2)将s随t变化的规律用数学关系式表示出来;
(3)若N城位于M地正南方向,且距M地650 km,试判断这场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着城市地铁建设的持续推进,市民的出行也越来越便利,根据大数据统计,某条地铁线路运行时,发车时间间隔(单位:分钟)满足: ,平均每班地铁的载客人数 (单位:人)与发车时间间隔近似地满足函数关系:,
(1)若平均每班地铁的载客人数不超过1560人,试求发车时间间隔的取值范围;
(2)若平均每班地铁每分钟的净收益为(单位:元),则当发车时间间隔为多少时,平均每班地铁每分钟的净收益最大?并求出最大净收益.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A(a,0)、B(0,b)(其中ab≠0)O为坐标原点.
(1)动点P(x,y)满足,求P点的轨迹方程;
(2)设是线段AB的n+1(n≥1)等分点,当n=2018时,求的值;
(3)若a=b=1,t∈[0,1],求的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com