精英家教网 > 高中数学 > 题目详情

【题目】边长为1的正三角形分别是边上的点,若,其中,设的中点为中点为.

1)若三点共线,求证:

2)若,求的最小值.

【答案】1)证明见解析;(2)最小值为.

【解析】

(1)利用共线向量基本定理得,根据三角形的中线对应的向量等于相邻两边对应的向量的和的一半,将已知条件代入得到要证的结论;

(2)利用向量的运算法则:三角形减法法则的逆运算将用三角形的边对应的向量表示,利用向量模的平方等于向量的平方,表示为的二次函数,求出二次函数的最小值.

(1)三点共线,共线,

根据共线向量定理可得,存在使得,

,

所以,

根据平面向量基本定理可得,

所以.

(2)因为,

,所以,

因为三角形是边长为1的正三角形,所以,,

所以

,

所以,取得最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示为一正方体的平面展开图,在这个正方体中,有下列四个命题:

AFGC

BDGC成异面直线且夹角为60

BDMN

BG与平面ABCD所成的角为45.

其中正确的个数是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产AB两种产品,生产每一吨产品所需的劳动力和煤、电耗如下表:

千瓦

A

3

9

4

B

10

4

5

已知生产每吨A产品的利润是7万元,生产每吨B产品的利润是12万元,现在条件有限,该企业仅有劳动力300个,煤360吨,并且供电局只能供电200千瓦,试问:该企业生产AB两种产品各多少吨,才能获得最大利润?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数在区间上的最大值和最小值之和为6,求实数的值;

2)设函数,若函数在区间上恒有零点,求实数的取值范围;

3)在问题(2)中,令,比较0的大小关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若对任意的,都存在,使得,则实数的取值范围是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代数学著作《算法统综》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”其大意为:“有一个人走378里路,第一天健步走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地”,请问此人第5天走的路程为( )

A. 36里 B. 24里 C. 18里 D. 12里

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】信息科技的进步和互联网商业模式的兴起,全方位地改变了大家金融消费的习惯和金融交易模式,现在银行的大部分业务都可以通过智能终端设备完成,多家银行职员人数在悄然减少.某银行现有职员320人,平均每人每年可创利20万元.据评估,在经营条件不变的前提下,每裁员1人,则留岗职员每人每年多创利0.2万元,但银行需付下岗职员每人每年6万元的生活费,并且该银行正常运转所需人数不得小于现有职员的,为使裁员后获得的经济效益最大,该银行应裁员多少人?此时银行所获得的最大经济效益是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(),曲线在点处的切线方程为.

(1)求实数的值,并求的单调区间;

(2)试比较的大小,并说明理由;

(3)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左、右焦点分别为,离心率是,直线过点交椭圆于 两点,当直线过点时, 的周长为.

求椭圆的标准方程;

当直线绕点运动时,试求的取值范围.

查看答案和解析>>

同步练习册答案