【题目】如图所示为一正方体的平面展开图,在这个正方体中,有下列四个命题:
①AF⊥GC;
②BD与GC成异面直线且夹角为60;
③BD∥MN;
④BG与平面ABCD所成的角为45.
其中正确的个数是( )
![]()
A. 1 B. 2 C. 3 D. 4
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆
:
的离心率为
,上、下顶点分别为
、
,点
在椭圆上,且异于点
、
,直线
、
与直线
:
分别交于点
、
,且
面积的最大值为
.
![]()
(1)求椭圆
的标准方程;
(2)求线段
的长的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(m,n∈R)在x=1处取得极值2.
(1)求f(x)的解析式;
(2)k为何值时,方程f(x)-k=0只有1个根
(3)设函数g(x)=x2-2ax+a,若对于任意x1∈R,总存在x2∈[-1,0],使得g(x2)≤f(x1),求a的取值范围
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有一矩形硬纸板材料(厚度忽略不计),一边
长为6分米,另一边足够长.现从中截取矩形
(如图甲所示),再剪去图中阴影部分,用剩下的部分恰好能折卷成一个底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计),其中
是以
为圆心、
的扇形,且弧
,
分别与边
,
相切于点
,
.
![]()
(1)当
长为1分米时,求折卷成的包装盒的容积;
(2)当
的长是多少分米时,折卷成的包装盒的容积最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将圆
上每个点的横坐标变为原来的4倍,纵坐标变为原来的3倍,得曲线
,以坐标原点为极点,
轴的非负轴分别交于
半轴为极轴建立极坐标系,直线
的极坐标方程为:
,且直线
在直角坐标系中与
轴分别交于
两点.
(1)写出曲线
的参数方程,直线
的普通方程;
(2)问在曲线
上是否存在点
,使得
的面积
,若存在,求出点
的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,直线l经过点P(2,0),其倾斜角为,在以原点O为极点,x轴非负半轴为极轴的极坐标系中(取相同的长度单位),曲线C的极坐标方程为
.
(Ⅰ)若直线l与曲线C有公共点,求倾斜角的取值范围;
(Ⅱ)设M(x,y)为曲线C上任意一点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知坐标平面上动点
与两个定点
,
,且
.
(1)求点
的轨迹方程,并说明轨迹是什么图形;
(2)记(1)中轨迹为
,过点
的直线
被
所截得的线段长度为8,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.
(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润
(单位:元)关于当天需求量
(单位:枝,
)的函数解析式.
(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:
![]()
以100天记录的各需求量的频率作为各需求量发生的概率.
(1)若花店一天购进17枝玫瑰花,
表示当天的利润(单位:元),求
的分布列及数学期望;
(2)若花店计划一天购进16枝或17枝玫瑰花,以利润角度看,你认为应购进16枝好还是17枝好?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com