精英家教网 > 高中数学 > 题目详情

【题目】某公司采用招考方式引进人才,规定必须在三个测试点中任意选取两个进行测试,若在这两个测试点都测试合格,则可参加面试,否则不被录用,已知考生在每个测试点测试结果互不影响,若考生小李和小王一起前来参加招考,小李在测试点测试合格的概率分别为,小王在上述三个测试点测试合格的概率都是.

1)问小李选择哪两个测试点测试才能使得可以参加面试的可能性最大?请说明理由;

2)假设小李选择测试点进行测试,小王选择测试点进行测试,记为两人在各测试点测试合格的测试点个数之和,求随机变量的分布列及数学期望.

【答案】1测试点,理由见解析;(2)分布列见解析,.

【解析】

1)利用独立事件的概率乘法公式分别计算出小李选择测试点测试合格的概率,比较大小后可得出结论;

2)由题意可知,随机变量的可能取值有,利用独立事件的概率乘法公式计算出随机变量在不同取值下的概率,可得出随机变量的概率分布列,进而可求得随机变量的数学期望的值.

1)设考生小李在各测试点测试合格记为事件,且各个事件相互独立,由题意

若选择在测试点测试,则参加面试的概率为

若选择在测试点测试,则参加面试的概率为

若选择在测试点测试,则参加面试的概率为.

因为,所以小李选择在测试点测试参加面试的可能性最大;

2)记小李在测试点测试合格记为事件,记小王在测试点测试合格记为事件,则,且的所有可能取值为.

所以

.

所以随机变量的分布列为:

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】1)已知圆台的上下底面半径分别是25,且侧面面积等于两底面面积之和,求该圆台的母线长.

2)有一个正四棱台形状的油槽,可以装油190L,假如它的两底面长分别等于60cm40cm,求它的深度为多少cm

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校在2013年的自主招生考试成绩中随机抽取40名学生的笔试成绩,按成绩共分成五组:第1[7580),第2[8085),第3[8590),第4[9095),第5[95100],得到的频率分布直方图如图所示,同时规定成绩在85分以上的学生为优秀,成绩小于85分的学生为良好,且只有成绩为优秀的学生才能获得面试资格.

1)求出第4组的频率,并补全频率分布直方图;

2)根据样本频率分布直方图估计样本的中位数与平均数;

3)如果用分层抽样的方法从优秀良好的学生中共选出5人,再从这5人中选2人,那么至少有一人是优秀的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知菱形与直角梯形所在的平面互相垂直,其中的中点

(Ⅰ)求证:

(Ⅱ)求二面角的余弦值;

(Ⅲ)设为线段上一点,,若直线与平面所成角的正弦值为,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某班学生喜欢数学是否与性别有关,对本班人进行了问卷调查得到了如下的列联表,已知在全部人中随机抽取人抽到喜欢数学的学生的概率为.

喜欢数学

不喜欢数学

合计

男生

女生

合计

1)请将上面的列联表补充完整(不用写计算过程);

2)能否在犯错误的概率不超过的前提下认为喜欢数学与性别有关?说明你的理由;

3)现从女生中抽取人进一步调查,设其中喜欢数学的女生人数为,求的分布列与期望.

下面的临界表供参考:

(参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数,按十位数字为茎,个位数字为叶得到的茎叶图如图所示.已知甲、乙两组数据的平均数都为10.

(1)求的值;

(2)分别求出甲、乙两组数据的方差,并由此分析两组技工的加工水平;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现从ABCDE五人中选取三人参加一个重要会议,五人中每个人被选中的机会均相等,求:

1AB都被选中的概率;

2AB至少有一个被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于方程为的曲线给出以下三个命题:

1)曲线关于原点对称;(2)曲线关于轴对称,也关于轴对称,且轴和轴是曲线仅有的两条对称轴;(3)若分别在第一、第二、第三、第四象限的点,都在曲线上,则四边形每一条边的边长都大于2

其中正确的命题是(

A.1)(2B.1)(3C.2)(3D.1)(2)(3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场举行促销活动,有两个摸奖箱,箱内有一个“”号球,两个“”号球,三个“”号球、四个无号球,箱内有五个“”号球,五个“”号球,每次摸奖后放回,每位顾客消费额满元有一次箱内摸奖机会,消费额满元有一次箱内摸奖机会,摸得有数字的球则中奖,“”号球奖元,“”号球奖元,“”号球奖元,摸得无号球则没有奖金。

(1)经统计,顾客消费额服从正态分布,某天有位顾客,请估计消费额(单位:元)在区间内并中奖的人数.(结果四舍五入取整数)

附:若,则.

(2)某三位顾客各有一次箱内摸奖机会,求其中中奖人数的分布列.

(3)某顾客消费额为元,有两种摸奖方法,

方法一:三次箱内摸奖机会;

方法二:一次箱内摸奖机会.

请问:这位顾客选哪一种方法所得奖金的期望值较大.

查看答案和解析>>

同步练习册答案