精英家教网 > 高中数学 > 题目详情

【题目】1)已知圆台的上下底面半径分别是25,且侧面面积等于两底面面积之和,求该圆台的母线长.

2)有一个正四棱台形状的油槽,可以装油190L,假如它的两底面长分别等于60cm40cm,求它的深度为多少cm

【答案】1 275cm

【解析】

1)分别表示出圆台两底面积的和与侧面积,列出方程即可得解;

2)由棱台体积VSSh,代入数值即可得解.

1)设圆台的母线长为l

则圆台的上底面面积为Sπ224π,圆台的下底面面积为Sπ5225π

所以圆台的底面面积为SS+S29π

又圆台的侧面积Sπ2+5l7πl

于是7πl29π,即l

2)由于VSSh

h75cm

故它的深度为75cm

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.

(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?

(2)在(1)的条件下,该县决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,点分别为棱的中点,点为上底面的中心,过三点的平面把正方体分为两部分,其中含的部分为,不含的部分为,连结的任一点,设与平面所成角为,则的最大值为

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求函数的单调区间;

(Ⅱ)若曲线在点处的切线与曲线切于点,求的值;

(Ⅲ)若恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形为矩形,平面.

(Ⅰ)求证:平面

(Ⅱ)点在线段上,且,过三点的平面将多面体分成两部分,设上、下两部分的体积分别为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,E、F分别为PC、BD的中点,侧面PAD⊥底面ABCD.

(1)求证:EF∥平面PAD;

(2)若EF⊥PC,求证:平面PAB⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过两点,且圆心在直线上.

(1)求圆的方程;

(2)设圆轴相交于两点,点为圆上不同于的任意一点,直线轴于点.当点变化时,以为直径的圆是否经过圆内一定点?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有正整数构成的数表如下:

第一行:1

第二行:12

第三行:1123

第四行:11211234

第五行:1121123112112345

第k行:先抄写第1行,接着按原序抄写第2行,然后按原序抄写第3行,…,直至按原序抄写第k﹣1行,最后添上数k.(如第四行,先抄写第一行的数1,接着按原序抄写第二行的数1,2,接着按原序抄写第三行的数1,1,2,3,最后添上数4).将按照上述方式写下的第n个数记作(如,…),用表示数表第行的数的个数,求数列{}的前项和=____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司采用招考方式引进人才,规定必须在三个测试点中任意选取两个进行测试,若在这两个测试点都测试合格,则可参加面试,否则不被录用,已知考生在每个测试点测试结果互不影响,若考生小李和小王一起前来参加招考,小李在测试点测试合格的概率分别为,小王在上述三个测试点测试合格的概率都是.

1)问小李选择哪两个测试点测试才能使得可以参加面试的可能性最大?请说明理由;

2)假设小李选择测试点进行测试,小王选择测试点进行测试,记为两人在各测试点测试合格的测试点个数之和,求随机变量的分布列及数学期望.

查看答案和解析>>

同步练习册答案