精英家教网 > 高中数学 > 题目详情
已知tan(2α+β)=3,tan(α+β)=1,则tanα=
 
考点:两角和与差的正切函数
专题:三角函数的求值
分析:由题意可得tanα=tan[(2α+β)-(α+β)]=
tan(2α+β)-tan(α+β)
1+tan(2α+β)tan(α+β)
,代值计算即可.
解答: 解:∵tan(2α+β)=3,tan(α+β)=1,
∴tanα=tan[(2α+β)-(α+β)]
=
tan(2α+β)-tan(α+β)
1+tan(2α+β)tan(α+β)

=
3-1
1+3×1
=
1
2

故答案为:
1
2
点评:本题考查两角差的正切公式,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

抛物线y2=2px(p>0)上有一点的纵坐标为-4
2
,这个点到准线的距离是6,求抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

写出圆心为C(1,-2),半径r=3的圆的方程,并判断点M(4,-2)、N(1,0)、P(5,1)与圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
1
2
(a+1)x2+ax+1
,a∈R.若函数f(x)在区间(-1,1)内是减函数,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式an=
n+1,n为正奇数
2n,n为正偶数
,则{an}的前n项和为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆和双曲线还可以由下面的方式定义:平面内到定点的距离和定直线(定点在定直线外)的距离的比为常数的点的集合.这里定点就是焦点,定直线就是与焦点相对应的准线,比如椭圆
x2
a2
+
y2
b2
=1(a>0,b>0)的准线方程为x=±
a2
c
(c为半焦距),双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的准线方程为x=±
a2
c
(c为半焦距)这里的常数就是其离心率e.现在设椭圆
x2
a2
+
y2
b2
=1(a>0,b>0)的左焦点为F,过F的直线与椭圆相交于A、B两点,那么以弦AB为直径的圆与左准线的位置关系应该是
 
,那么类比到双曲线中结论是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数y=f(x)满足条件f(x+2)=-f(x),且函数y=f(x-1)为奇函数,给出以下四个命题:
①函数f(x)是周期函数;       
②函数f(x)的图象关于点(-1,0)对称;
③函数f(x)为R上的偶函数;   
④函数f(x)为R上的单调函数.
其中真命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图程序段以后输出的结果为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线x2=
1
2
y的焦点F到其准线l的距离是
 

查看答案和解析>>

同步练习册答案