精英家教网 > 高中数学 > 题目详情

已知函数f(x)=2x2+(4-m)x+4-m,g(x)=mx,若对于任一实数x,f(x)与g(x)的值至少有一个为正数,求实数m的取值范围.

解:当m=0时,f(x)=2x2+4x+4,g(x)=0,
∵f(x)=2(x+1)2+2>0,∴m=0符合题意.
若m<0,在x<0时,g(x)>0,在x≥0时,g(x)≤0,
∴需要f(x)=2x2+(4-m)x+4-m>0在[0,+∞)上恒成立.
,∴f(0)=4-m>0,∴m<4,∴m<0符合题意.
若m>0,在x>0时,g(x)>0,在x≤0时,g(x)≤0,
∴需要f(x)=2x2+(4-m)x+4-m>0在(-∞,0]上恒成立.

综上可知m<4.
分析:不论m为何值,对于任一实数x,f(x)与g(x)的值至少有一个为正数,所以对m分类讨论,即m=0、m<0、m>0 讨论f(x)与g(x)的值的正负,求出满足题意的m的值.
点评:本题考查一元二次方程的根的分布与系数的关系,考查分类讨论思想,转化思想,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案