精英家教网 > 高中数学 > 题目详情
4.函数y=2x(1-x)(其中0<x<1)的最大值是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

分析 由题意可得0<1-x<1,由基本不等式y=2x(1-x)≤2×($\frac{x+1-x}{2}$)2,验证等号成立即可

解答 解:∵0<x<1,
∴0<1-x<1,
∴y=2x(1-x)≤2×($\frac{x+1-x}{2}$)2=$\frac{1}{2}$,当且仅当x=$\frac{1}{2}$取等号,
故选:B.

点评 本题考查基本不等式,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.在△ABC中,已知acosB=bcosA,那么△ABC一定是(  )
A.等腰三角形B.直角三角形
C.等腰三角形或直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x)=x2-2x,则当x∈(-∞,0)时,f(x)=-x2-2x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.?x∈R,x2-2x+3>0的否定是(  )
A.不存在x∈R,使?x2-2x+3≥0B.?x∈R,x2-2x+3≤0
C.?x∈R,x2-2x+3≤0D.?x∈R,x2-2x+3>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.数列{an}满足a1=3,an-an•an+1=1,An表示{an}前n项之积,则A2016的值为(  )
A.-$\frac{1}{2}$B.$\frac{2}{3}$C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.△ABC中,角A,B,C的对边分别为a,b,c,若满足c=$\sqrt{2}$,a2+b2=c2+$\sqrt{2}$ab的△ABC有两个,则边长BC的取值范围是(  )
A.$(1,\sqrt{2})$B.$(1,\sqrt{3})$C.$(\sqrt{2},2)$D.$(\sqrt{3},2)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列各式计算正确的个数是(  )
①(-7)•6$\overrightarrow a$=-42$\overrightarrow a$;②$\overrightarrow a$-2$\overrightarrow b$+2(${\overrightarrow a$+$\overrightarrow b}$)=3$\overrightarrow a$;③$\overrightarrow a$+$\overrightarrow b$-($\overrightarrow a$+$\overrightarrow b}$)=$\overrightarrow 0$.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和为Sn=n2
(1)求该数列{an}的通项公式;
(2)已知数列{bn}满足bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.点(3,1)关于直线y=x对称的点的坐标是(1,3).

查看答案和解析>>

同步练习册答案