精英家教网 > 高中数学 > 题目详情
已知对任意实数,有,且时,,则时        (    )
A.
B.
C.
D.
B
是奇函数,是偶函数,且时,,由对称性可知
故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知函数  (bc为常数).
(1) 若处取得极值,试求bc的值;
(3)若上单调递增,且在上单调递减,又满足,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数定义域为),设
(1)试确定的取值范围,使得函数上为单调函数;
(2)求证:
(3)求证:对于任意的,总存在,满足,并确定这样的的个数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)若函数
(1)当时,求函数的单调增区间;
(2)函数是否存在极值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(理数)(14分) 已知函数
(Ⅰ)设函数F(x)=18f(x)- [h(x)],求F(x)的单调区间与极值;
(Ⅱ)设,解关于x的方程
(Ⅲ)设,证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=lnx-ax2+(2-a)x
(1)讨论f(x)的单调性;(2)设a>0,证明:当0<x<时,f>f
(3)若函数y=f(x)的图象与x轴交于A,B两点,线段AB中点的横坐标为x0,证明f′(x0)<0.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)设函数
(1)求的单调区间;
(2)证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=x3+3x2+3x-a的极值个数是                                           (  )
A.2B.1
C.0D.与a值有关

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知f(x)=lnx+cosx,则           

查看答案和解析>>

同步练习册答案