精英家教网 > 高中数学 > 题目详情
以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系.已知点P的极坐标为(),直线l过点P,且倾斜角为,方程=1所对应的曲线经过伸缩变换后的图形为曲线C.
(Ⅰ)求直线l的参数方程和曲线C的直角坐标系方程.
(Ⅱ)直线l与曲线C相交于两点A,B,求|PA|•|PB|的值.
【答案】分析:(Ⅰ)确定P的直角坐标,利用直线l过点P,且倾斜角为,可得直线l的参数方程;确定坐标之间的关系,代入方程,化简可得结论;
(Ⅱ)直线l的参数方程,代入曲线方程,利用参数的几何意义,即可求|PA|•|PB|的值.
解答:解:(Ⅰ)P的直角坐标为(1,1)
∵直线l过点P,且倾斜角为,∴直线l的参数方程为(t为参数)
∵伸缩变换,∴
代入=1,可得,即x′2+y′2=4
∴曲线C的直角坐标系方程为x2+y2=4;
(Ⅱ)直线l的参数方程为,代入曲线C可得t2+()t-2=0
设方程的根为t1,t2,则t1+t2=;t1t2=-2
∴|PA|•|PB|=|t1||t2|=2
点评:本题考查直线的参数方程,考查代入法求轨迹方程,考查直线与椭圆的位置关系,考查参数的几何意义,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

以直角坐标系的原点O为极点,x轴的正半轴为极轴.已知点P的直角坐标为(1,-5),点M的极坐标为(4,
π
2
).若直线l过点P,且倾斜角为
π
3
,圆C以M为圆心、4为半径.
(Ⅰ)求直线l的参数方程和圆C的极坐标方程;
(Ⅱ)试判定直线l和圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的单位长度.已知直线l经过点P(1,1),倾斜角α=
π
6

(I)写出直线l的参数方程是
x=
3
t+1
y=t+1
(t为参数),
x=
3
t+1
y=t+1
(t为参数),

(II)设l与圆ρ=2相交与两点A、B,求点P到A、B两点的距离之积是
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌县一模)以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系.已知点P的极坐标为(
2
π
4
),直线l过点P,且倾斜角为
3
,方程
x2
36
+
y2
16
=1所对应的曲线经过伸缩变换
x′=
1
3
x
y′=
1
2
y
后的图形为曲线C.
(Ⅰ)求直线l的参数方程和曲线C的直角坐标系方程.
(Ⅱ)直线l与曲线C相交于两点A,B,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

三题中任选两题作答
(1)(2011年江苏高考)已知矩阵A=
11
21
,向量β=
1
2
,求向量α,使得A2α=β
(2)(2011年山西六校模考)以直角坐标系的原点O为极点,x轴的正半轴为极轴,已知点P的直角坐标为(1,-5),点M的极坐标为(4,
π
2
)
,若直线l过点P,且倾斜角为
π
3
,圆C以M为圆心、4为半径.
①求直线l的参数方程和圆C的极坐标方程;  ②试判定直线l和圆C的位置关系.
(3)若正数a,b,c满足a+b+c=1,求
1
3a+2
+
1
3b+2
+
1
3c+2
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

以直角坐标系的原点O为极点,x轴的正半轴为极轴.已知点P的直角坐标为(-1,5),点M的极坐标为(4,
π
2
).若直线l过点P,且倾斜角为
π
3
,圆C以M为圆心,半径为4.
(Ⅰ)求直线l的参数方程和圆C的极坐标方程;
(Ⅱ)试判定直线l和圆C的位置关系.

查看答案和解析>>

同步练习册答案