【题目】已知椭圆C方程为 (a>b>0),左、右焦点分别是F1 , F2 , 若椭圆C上的点P(1, )到F1 , F2的距离和等于4. (Ⅰ)写出椭圆C的方程和焦点坐标;
(Ⅱ)设点Q是椭圆C的动点,求线段F1Q中点T的轨迹方程;
(Ⅲ)直线l过定点M(0,2),且与椭圆C交于不同的两点A,B,若∠AOB为锐角(O为坐标原点),求直线l的斜率k0的取值范围.
【答案】解:(Ⅰ)由题意得:2a=4,得a=2, 又点P(1, )在椭圆 上,
∴ ,解得b2=1.
∴椭圆C的方程为 ,焦点 ;
(Ⅱ)设椭圆上的动点Q(x0 , y0),线段F1Q中点T(x,y),
由题意得: ,得 ,代入椭圆的方程得 ,
即 为线段F1Q中点T的轨迹方程;
(Ⅲ)由题意得直线l的斜率存在且不为0,
设l:y=kx+2,代入 整理,
得(1+4k2)x2+16kx+12=0,
△=(16k)2﹣4(1+4k2)12=16(4k2﹣3)>0,得 …①
设A(x1 , y1),B(x2 , y2),∴ .
∵∠AOB为锐角,
∴cos∠AOB>0,则 ,
又 .
∴
=
= ,
∴k2<4 …②
由①、②得 .
∴k的取值范围是 .
【解析】(Ⅰ)由题意得到椭圆的半长轴长,把点P的坐标代入椭圆方程求得b,则椭圆方程可求;(Ⅱ)设出Q和T的坐标,由中点坐标公式把Q的坐标用T的坐标表示,代入椭圆方程可得线段F1Q中点T的轨迹方程;(Ⅲ)联立直线和椭圆方程,化为关于x的应用二次方程,由判别式大于0及 求解直线l的斜率的取值范围.
【考点精析】解答此题的关键在于理解椭圆的标准方程的相关知识,掌握椭圆标准方程焦点在x轴:,焦点在y轴:.
科目:高中数学 来源: 题型:
【题目】某种商品原来每件售价为25元,年销售量8万件.
(Ⅰ)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收人不低于原收入,该商品每件定价最多为多少元?
(Ⅱ)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到x元.公司拟投入 (x2﹣600)万元作为技改费用,投入50万元作为固定宣传费用,投入 x万元作为浮动宣传费用.试问:当该商品明年的销售量a至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数y=Asin(ωx+φ)在一个周期内的图象如图,此函数的解析式为( )
A.y=2sin(2x+ )
B.y=2sin(2x+ )
C.y=2sin( ﹣ )
D.y=2sin(2x﹣ )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知A、B、C是椭圆上不同的三点, ,C在第三象限,线段BC的中点在直线OA上。
(1)求椭圆的标准方程;
(2)求点C的坐标;
(3)设动点P在椭圆上(异于点A、B、C)且直线PB, PC分别交直线OA于M、N两点,证明为定值并求出该定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆, 在抛物线上,圆过原点且与的准线相切.
(Ⅰ) 求的方程;
(Ⅱ) 点,点(与不重合)在直线上运动,过点作的两条切线,切点分别为, .求证: (其中为坐标原点).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】支篮球队进行单循环比赛(任两支球队恰进行一场比赛),任两支球队之间胜率都是.单循环比赛结束,以获胜的场次数作为该队的成绩,成绩按从大到小排名次顺序,成绩相同则名次相同.有下列四个命题:
:恰有四支球队并列第一名为不可能事件; :有可能出现恰有两支球队并列第一名;
:每支球队都既有胜又有败的概率为; :五支球队成绩并列第一名的概率为.
其中真命题是
A. ,, B. ,, C. .. D. ..
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】回答下列问题
(1)已知圆C的方程为x2+y2=4,直线l过点P(1,2),且与圆C交于A、B两点.若|AB|=2 ,求直线l的方程;
(2)设直线l的方程为(a+1)x+y﹣2﹣a=0(a∈R).若直线l在两坐标轴上的截距相等,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知: 、 、 是同一平面上的三个向量,其中 =(1,2).
(1)若| |=2 ,且 ∥ ,求 的坐标.
(2)若| |= ,且 +2 与2 ﹣ 垂直,求 与 的夹角θ
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93,下列说法正确的是( )
A.这种抽样方法是一种分层抽样
B.这种抽样方法是一种系统抽样
C.这五名男生成绩的方差大于这五名女生成绩的方差
D.该班男生成绩的平均数大于该班女生成绩的平均数
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com