精英家教网 > 高中数学 > 题目详情
17.已知向量$\overrightarrow{a}$=(m,4),$\overrightarrow{b}$=(1,1),$\overrightarrow{c}$=(2,1),且($\overrightarrow{a}$-2$\overrightarrow{b}$)⊥$\overrightarrow{c}$,则实数m的值为(  )
A.1B.2C.3D.4

分析 根据平面向量的坐标表示与数量积的定义,列出方程即可求出m的值.

解答 解:向量$\overrightarrow{a}$=(m,4),$\overrightarrow{b}$=(1,1),$\overrightarrow{c}$=(2,1),
∴$\overrightarrow{a}$-2$\overrightarrow{b}$=(m-2,2),
又($\overrightarrow{a}$-2$\overrightarrow{b}$)⊥$\overrightarrow{c}$,
∴($\overrightarrow{a}$-2$\overrightarrow{b}$)•$\overrightarrow{c}$=2(m-2)+2×1=0,
解得m=1.
故选:A.

点评 本题考查了平面向量的坐标表示与数量积的运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.在△ABC中,|$\overrightarrow{AB}$|=1,|$\overrightarrow{AC}$|=3,∠BAC=60°,则|$\overrightarrow{BC}$|=(  )
A.1B.$\sqrt{7}$C.3D.$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=$\sqrt{2}$,AF=1,M是线段EF的中点.
(1)求证:AM∥平面BDE;
(2)求二面角A-DF-B的大小;
(3)试在线段AC上一点P,使得PF与BC所成的角是60°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.阅读如图所示的程序框图,则输出的S=(  )
A.3B.15C.21D.35

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知线性回归方程$\widehat{y}$=3x+0.3,则对应于点(2,6.4)的残差为0.1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设角α的顶点与原点O重合,始边与x轴的非负半轴重合,P(-2,-2$\sqrt{3}$)是角α终边上一点,则sin2α的值为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=2sin(x-$\frac{π}{3}$)cosx+sinx(cosx+$\sqrt{3}$sinx),x∈R.
(Ⅰ)若α∈(-$\frac{π}{2}$,0),且cosα=$\frac{1}{3}$,求f($\frac{α}{2}$)的值;
(Ⅱ)已知△ABC的角A,B,C的对边分别为a,b,c,若f(A)=$\sqrt{3}$,a=4,求△ABC的面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知$\overline z$=$\frac{i}{1-i}$是复数z的共轭复数,则z=(  )
A.-$\frac{1}{2}$-$\frac{1}{2}$iB.-$\frac{1}{2}$+$\frac{1}{2}$iC.$\frac{1}{2}$-$\frac{1}{2}$iD.$\frac{1}{2}$+$\frac{1}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知边长为2的等边△ABC,其中点P,Q,G分别是边AB,BC,CA上的三点,且AP=$\frac{1}{2}$AB,BQ=$\frac{1}{3}$BC,CG=$\frac{1}{4}$CA,则$\overrightarrow{PQ}$•$\overrightarrow{PG}$=(  )
A.$\frac{5}{12}$B.$\frac{7}{12}$C.$\frac{3}{4}$D.$\frac{11}{12}$

查看答案和解析>>

同步练习册答案