精英家教网 > 高中数学 > 题目详情
13.已知集合A={x|2x+6<0},B={x|x2+3x-10≤0}.求:
(1)A∩B;
(2)(∁RA)∪(∁RB)

分析 分别求解一元一次不等式和一元二次不等式化简集合A,B.
(1)直接利用交集运算得答案;
(2)求出∁RA,∁RB,再由并集运算得答案.

解答 解:A={x|2x+6<0}={x|x<-3},B={x|x2+3x-10≤0}={x|-5≤x≤2}.
(1)A∩B={x|x<-3}∩{x|-5≤x≤2}=[-5,-3);
(2)∵∁RA={x|x≥-3},∁RB={x|x<-5或x>2},
∴(∁RA)∪(∁RB)={x|x≥-3}∪{x|x<-5或x>2}=(-∞,-5)∪[-3,+∞).

点评 本题考查交、并、补集的混合运算,考查一元一次不等式和一元二次不等式的解法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.定理:若x∈(0,$\frac{π}{2}$),则sinx<x,设a,b,c∈(0,$\frac{π}{2}$),其中,a是函数y=x与y=cosx图象交点横坐标,b=sin(cosb),c=cos(sinc),则a,b,c的大小关系是(  )
A.a<b<cB.a<c<bC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若f(-2x)+2f(2x)=3x-2,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知全集U=R,集合A={x|-3≤x≤4},B={x|a-1<x<a+2,a∈R},且∁UA∪∁UB=R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知全集U=R,集合A={x|x2-4x+3≥0},B={x|2k<x<k+1}.
(1)若A⊆∁UB,求实数k的取值范围;
(2)若(∁UA)∩B≠∅,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=$\frac{2x-3}{x}$图象的对称中心为(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知集合A={x|x2-3x+2≤0},B={x|x2-(a+1)x+a≤0}
(1)若A是B的真子集,求a的取值范围.
(2)若B是A的子集,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数f(x)=$\frac{2}{\sqrt{a{x}^{2}-5x+b}}$的定义域是{x|-3<x<-2},则函数g(x)=$\sqrt{b{x}^{2}-5x+a}$的定义域是[$-\frac{1}{2},-\frac{1}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=2mlnx-x2,g(x)=ex-2mlnx(m∈R),ln2=0.693.
(1)讨论f(x)的单调性;
(2)若f(x)存在最大值M,g(x)存在最小值N,且M≥N,求证:m>$\frac{e}{2}$.

查看答案和解析>>

同步练习册答案