精英家教网 > 高中数学 > 题目详情

(本小题13分)已知函数
(1)若实数求函数上的极值;
(2)记函数,设函数的图像轴交于点,曲线点处的切线与两坐标轴所围成图形的面积为则当时,求的最小值.

(1)有极小值.(2)2.

解析试题分析:(1)求函数的导数,然后确定函数f(x)的单调区间,在进一步求出极值即可.
(2)求出g(x)的解析式,求出P(0,1+a),由导数的几何意义求出P点处的斜率,在求出切线方程,写出S(a)的表达式,由基本不等式的性质求其最小值即可.
试题解析:(1)
时,由
,则,所以恒成立,
所以单调递增,无极值。
,则单调递减;
单调递增。
所以有极小值
(2)=
,即
点处切线斜率:
点处切线方程:
,令
所以


当且仅当
考点:1.求函数的导数和导数的几何意义;2.利用导数求函数的单调区间;3.基本不等式的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求函数的极值;
(2)求函数的单调区间;
(3)是否存在实数,使函数上有唯一的零点,若有,请求出的范围;若没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,()在处取得最小值.
(Ⅰ)求的值;
(Ⅱ)若处的切线方程为,求证:当时,曲线不可能在直线的下方;
(Ⅲ)若,()且,试比较的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若,求函数在区间上的最值;
(Ⅱ)若恒成立,求的取值范围. (注:是自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(Ⅰ)讨论函数的单调性;
(Ⅱ)若,证明:时,成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时,求的极值;
(Ⅱ)若在区间上是增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数h(x)=ax2+bx+c(其中c<3),其导函数的图象如图,f(x)=6lnx+h(x).

①求f(x)在x=3处的切线斜率;
②若f(x)在区间(m,m+)上是单调函数,求实数m的取值范围;
③若对任意k∈[-1,1],函数y=kx(x∈(0,6])的图象总在函数y=f(x)图象的上方,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处取得极值.
(1)求实数的值;
(2)若关于的方程上恰有两个不相等的实数根,求实数的取值范围;
(3)若,使成立,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若,求函数在区间上的最值;
(Ⅱ)若恒成立,求的取值范围.
注:是自然对数的底数

查看答案和解析>>

同步练习册答案