精英家教网 > 高中数学 > 题目详情

已知函数
(Ⅰ)当时,求的极值;
(Ⅱ)若在区间上是增函数,求实数的取值范围.

(Ⅰ)极小值为1+ln2,函数无极大值;(Ⅱ).

解析试题分析:(Ⅰ)首先确定函数的定义域(此步容易忽视),把代入函数,再进行求导,列的变化情况表,即可求函数的极值;(Ⅱ)先对函数求导,得,再对两种情况讨论(此处易忽视这种情况),由题意函数在区间是增函数,则恒成立,即不等式恒成立,从而再列出应满足的关系式,解出的取值范围.
试题解析:(Ⅰ)函数的定义域为,      1分
,当a=0时,,则,      3分
的变化情况如下表

x
(0,)

(,+∞)

-
0
+


极小值

∴当时, 的极小值为1+ln2,函数无极大值.               7分
(Ⅱ)由已知,得,  8分
,由,显然不合题意,       9分
∵函数区间是增函数,
恒成立,即不等式恒成立,
恒成立,  11分
,而当,函数,  13分
∴实数
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ) 求函数的单调区间;
(Ⅱ) 当时,求函数上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

 
(1)如果处取得最小值,求的解析式;
(2)如果的单调递减区间的长度是正整数,试求的值.(注:区间的长度为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为.
(I)求函数上的最小值;
(Ⅱ)对,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题13分)已知函数
(1)若实数求函数上的极值;
(2)记函数,设函数的图像轴交于点,曲线点处的切线与两坐标轴所围成图形的面积为则当时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中为常数。
(Ⅰ)当时,判断函数在定义域上的单调性;
(Ⅱ)若函数有极值点,求的取值范围及的极值点。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若,求的极大值;
(Ⅱ)若在定义域内单调递减,求满足此条件的实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数的最大值;
(2)若函数没有零点,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在的函数,在处的切线斜率为
(Ⅰ)求的单调区间;
(Ⅱ)当时,恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案